3,746 research outputs found

    Evaluation of piezodiagnostics approach for leaks detection in a pipe loop

    Get PDF
    Pipe leaks detection has a great economic, environmental and safety impact. Although several methods have been developed to solve the leak detection problem, some drawbacks such as continuous monitoring and robustness should be addressed yet. Thus, this paper presents the main results of using a leaks detection and classification methodology, which takes advantage of piezodiagnostics principle. It consists of: i) transmitting/sensing guided waves along the pipe surface by means of piezoelectric device ii) representing statistically the cross-correlated piezoelectric measurements by using Principal Component Analysis iii) identifying leaks by using error indexes computed from a statistical baseline model and iv) verifying the performance of the methodology by using a Self Organizing Map as visualization tool and considering different leak scenario. In this sense, the methodology was experimentally evaluated in a carbon-steel pipe loop under different leaks scenarios, with several sizes and locations. In addition, the sensitivity of the methodology to temperature, humidity and pressure variations was experimentally validated. Therefore, the effectiveness of the methodology to detect and classify pipe leaks, under varying environmental and operational conditions, was demonstrated. As a result, the combination of piezodiagnostics approach, cross-correlation analysis, principal component analysis, and Self Organizing Maps, become as promising solution in the field of structural health monitoring and specifically to achieve robust solution for pipe leak detection.Peer ReviewedPostprint (author's final draft

    The Gas Transportation in a Pipeline Network

    Get PDF

    Feasibility Evaluation of a Vibration-Based Leak Detection Technique for Sustainable Water Distribution Pipeline System Monitoring

    Get PDF
    Conventional water pipeline leak-detection surveys employ labor-intensive acoustic techniques, which are usually expensive and less useful for continuous monitoring of distribution pipelines. Based on a comprehensive review of literature and available commercial products, it has been recognized that despite previous studies and products attempting to address the limitations of the conventional surveys by proposing and evaluating a myriad of leak-detection techniques (LDTs), they lacked extensive validation on complex looped systems. Additionally, they offer limited compatibility with some pipe materials such as those made of plastic and may even fail to distinguish leaks from other system disturbances. A novel LDT that addresses some of these limitations is developed and evaluated in the current study using an experimental set-up that is representative of a real-world pipeline system and made of Polyvinyl Chloride (PVC) pipe. The studied LDT requires continuous monitoring of the change in the cross spectral density of surface vibration measured at discrete locations along the pipeline. This vibration-based LDT was hypothesized to be capable of not only detecting the onset of leakage, but also determining its relative severity in complex pipeline systems. Findings based on a two-phase, controlled experimental testing revealed that the proposed LDT is capable of detecting leakages and estimating their relative severities in a real-size, multi-looped pipeline system that is comprised of multiple joints, bends and pipes of multiple sizes. Furthermore, the sustainability merits of the proposed LDT for a representative application scenario are estimated. Specifically, life cycle costs and energy consumption for monitoring the large diameter pipelines in the water distribution system of the Charleston peninsula region in South Carolina are estimated by developing conceptual prototypes of the sensing, communication and computation schemes for practically employing the proposed LDT. The prototype designs are informed by the knowledge derived from the two-phase experimental testing campaign. Overall, the proposed study contributes to the body of knowledge on water pipeline leak detection, specifically to non-intrusive vibration-based monitoring, applications on plastic pipelines, and smart and sustainable network-wide continuous monitoring schemes

    Estimating irregular water demands with physics-informed machine learning to inform leakage detection

    Full text link
    Leakages in drinking water distribution networks pose significant challenges to water utilities, leading to infrastructure failure, operational disruptions, environmental hazards, property damage, and economic losses. The timely identification and accurate localisation of such leakages is paramount for utilities to mitigate these unwanted effects. However, implementation of algorithms for leakage detection is limited in practice by requirements of either hydraulic models or large amounts of training data. Physics-informed machine learning can utilise hydraulic information thereby circumventing both limitations. In this work, we present a physics-informed machine learning algorithm that analyses pressure data and therefrom estimates unknown irregular water demands via a fully connected neural network, ultimately leveraging the Bernoulli equation and effectively linearising the leakage detection problem. Our algorithm is tested on data from the L-Town benchmark network, and results indicate a good capability for estimating most irregular demands, with R2 larger than 0.8. Identification results for leakages under the presence of irregular demands could be improved by a factor of 5.3 for abrupt leaks and a factor of 3.0 for incipient leaks when compared the results disregarding irregular demands.Comment: submitted to Water Research on July 17th, 202

    JUNO Conceptual Design Report

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is proposed to determine the neutrino mass hierarchy using an underground liquid scintillator detector. It is located 53 km away from both Yangjiang and Taishan Nuclear Power Plants in Guangdong, China. The experimental hall, spanning more than 50 meters, is under a granite mountain of over 700 m overburden. Within six years of running, the detection of reactor antineutrinos can resolve the neutrino mass hierarchy at a confidence level of 3-4σ\sigma, and determine neutrino oscillation parameters sin2θ12\sin^2\theta_{12}, Δm212\Delta m^2_{21}, and Δmee2|\Delta m^2_{ee}| to an accuracy of better than 1%. The JUNO detector can be also used to study terrestrial and extra-terrestrial neutrinos and new physics beyond the Standard Model. The central detector contains 20,000 tons liquid scintillator with an acrylic sphere of 35 m in diameter. \sim17,000 508-mm diameter PMTs with high quantum efficiency provide \sim75% optical coverage. The current choice of the liquid scintillator is: linear alkyl benzene (LAB) as the solvent, plus PPO as the scintillation fluor and a wavelength-shifter (Bis-MSB). The number of detected photoelectrons per MeV is larger than 1,100 and the energy resolution is expected to be 3% at 1 MeV. The calibration system is designed to deploy multiple sources to cover the entire energy range of reactor antineutrinos, and to achieve a full-volume position coverage inside the detector. The veto system is used for muon detection, muon induced background study and reduction. It consists of a Water Cherenkov detector and a Top Tracker system. The readout system, the detector control system and the offline system insure efficient and stable data acquisition and processing.Comment: 328 pages, 211 figure

    Laplace-domain analysis of fluid line networks with applications to time-domain simulation and system parameter identification.

    Get PDF
    Networks of closed conduits containing pressurised fluid flow occur in many different instances throughout the natural and man made world. The dynamics of such networks are dependent not only on the complex interactions between the fluid body and the conduit material within each fluid line, but also on the coupling between different lines as they influence each other through their common junctions. The forward modelling (time-domain simulation), and inverse modelling (system parameter identification) of such systems is of great interest to many different research fields. An alternative approach to time-domain descriptions of fluid line networks is the Laplace-domain representation of these systems. A long standing limitation of these methods is that the frameworks for constructing Laplace-domain models have not been suitable for pipeline networks of an arbitrary topology. The objective of this thesis is to fundamentally extend the existing theory for Laplace-domain descriptions of hydraulic networks and explore the applications of this theory to forward and inverse modelling. The extensions are undertaken by the use of graph theory concepts to construct network admittance matrices based on the Laplace-domain solutions of the fundamental pipeline dynamics. This framework is extended to incorporate a very broad class of hydraulic elements. Through the use of the numerical inverse Laplace transform, the proposed theory forms the basis for an accurate and computationally efficient hydraulic network time-domain simulation methodology. The compact analytic nature of the network admittance matrix representation facilitates the development of two successful and statistically based parameter identification methodologies, one based on an oblique filtering approach combined with maximum likelihood estimation, and the other based on the expectation-maximisation algorithm.Thesis (Ph.D.) -- University of Adelaide, School of Civil, Environmental and Mining Engineering, 201

    NASA Tech Briefs Index, 1977, volume 2, numbers 1-4

    Get PDF
    Announcements of new technology derived from the research and development activities of NASA are presented. Abstracts, and indexes for subject, personal author, originating center, and Tech Brief number are presented for 1977

    High-viscosity biphasic flow characterization in a pipeline: application to flow pattern classification and leak detection

    Get PDF
    Pipeline systems play an essential role in the oil industry. These systems connect ports, oil fields, refineries, and consumer markets[104]. Pipelines covering long distances require pumping stations, where products are propelled to the next pumping station, refinery, or deposit terminal, thus traveling through most of the country. The product considered in this research work is crude oil. It is usually transported with a combination of crude oil with viscosity reducers (DRA, drag reducer agent) and oil with gas in onshore/offshore pipelines. This mode of transport is efficient for large quantities and large product shipment distances. Problems may arrive when a leak occurs. In major incidents, large scale damage to humans and the environment is possible. Then, this research addresses the problem of how to detect the leak earlier to reduce the impact in the surrounding areas and economic losses, considering five research topics taking into account that the products inside the pipeline are water-glycerol and gas-glycerol mixtures (simulating oil-DRA and oil-gas in the laboratory test apparatus). The first research topic presents a mathematical model to describe the flow of a mixture of water and glycerol in pressurized horizontal pipelines, which emulates the mixture of heavy oil and a viscosity reducer. The model is based on the mass and momentum conservation principles and empirical correlations for the mixture’s density and viscosity. The set of partial differential equations is solved using finite differences. These equations were implemented in a computer platform to be able to simulate a system. This simulation platform is a tool to simulate leak cases for different fractions of water and glycerol to evaluate algorithms for leak detection and localization before their implementation in a laboratory setting.DoctoradoDoctor en Ingeniería Mecánic

    The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events

    Get PDF
    The design, construction, and commissioning of the ALICE Time-Projection Chamber (TPC) is described. It is the main device for pattern recognition, tracking, and identification of charged particles in the ALICE experiment at the CERN LHC. The TPC is cylindrical in shape with a volume close to 90 m^3 and is operated in a 0.5 T solenoidal magnetic field parallel to its axis. In this paper we describe in detail the design considerations for this detector for operation in the extreme multiplicity environment of central Pb--Pb collisions at LHC energy. The implementation of the resulting requirements into hardware (field cage, read-out chambers, electronics), infrastructure (gas and cooling system, laser-calibration system), and software led to many technical innovations which are described along with a presentation of all the major components of the detector, as currently realized. We also report on the performance achieved after completion of the first round of stand-alone calibration runs and demonstrate results close to those specified in the TPC Technical Design Report.Comment: 55 pages, 82 figure
    corecore