14,379 research outputs found

    Lattice Points in Orthotopes and a Huge Polynomial Tutte Invariant of Weighted Gain Graphs

    Full text link
    A gain graph is a graph whose edges are orientably labelled from a group. A weighted gain graph is a gain graph with vertex weights from an abelian semigroup, where the gain group is lattice ordered and acts on the weight semigroup. For weighted gain graphs we establish basic properties and we present general dichromatic and forest-expansion polynomials that are Tutte invariants (they satisfy Tutte's deletion-contraction and multiplicative identities). Our dichromatic polynomial includes the classical graph one by Tutte, Zaslavsky's two for gain graphs, Noble and Welsh's for graphs with positive integer weights, and that of rooted integral gain graphs by Forge and Zaslavsky. It is not a universal Tutte invariant of weighted gain graphs; that remains to be found. An evaluation of one example of our polynomial counts proper list colorations of the gain graph from a color set with a gain-group action. When the gain group is Z^d, the lists are order ideals in the integer lattice Z^d, and there are specified upper bounds on the colors, then there is a formula for the number of bounded proper colorations that is a piecewise polynomial function of the upper bounds, of degree nd where n is the order of the graph. This example leads to graph-theoretical formulas for the number of integer lattice points in an orthotope but outside a finite number of affinographic hyperplanes, and for the number of n x d integral matrices that lie between two specified matrices but not in any of certain subspaces defined by simple row equations.Comment: 32 pp. Submitted in 2007, extensive revisions in 2013 (!). V3: Added references, clarified examples. 35 p

    Simplicial and Cellular Trees

    Get PDF
    Much information about a graph can be obtained by studying its spanning trees. On the other hand, a graph can be regarded as a 1-dimensional cell complex, raising the question of developing a theory of trees in higher dimension. As observed first by Bolker, Kalai and Adin, and more recently by numerous authors, the fundamental topological properties of a tree --- namely acyclicity and connectedness --- can be generalized to arbitrary dimension as the vanishing of certain cellular homology groups. This point of view is consistent with the matroid-theoretic approach to graphs, and yields higher-dimensional analogues of classical enumerative results including Cayley's formula and the matrix-tree theorem. A subtlety of the higher-dimensional case is that enumeration must account for the possibility of torsion homology in trees, which is always trivial for graphs. Cellular trees are the starting point for further high-dimensional extensions of concepts from algebraic graph theory including the critical group, cut and flow spaces, and discrete dynamical systems such as the abelian sandpile model.Comment: 39 pages (including 5-page bibliography); 5 figures. Chapter for forthcoming IMA volume "Recent Trends in Combinatorics

    A graph-based mathematical morphology reader

    Full text link
    This survey paper aims at providing a "literary" anthology of mathematical morphology on graphs. It describes in the English language many ideas stemming from a large number of different papers, hence providing a unified view of an active and diverse field of research

    Minimal-memory realization of pearl-necklace encoders of general quantum convolutional codes

    Full text link
    Quantum convolutional codes, like their classical counterparts, promise to offer higher error correction performance than block codes of equivalent encoding complexity, and are expected to find important applications in reliable quantum communication where a continuous stream of qubits is transmitted. Grassl and Roetteler devised an algorithm to encode a quantum convolutional code with a "pearl-necklace encoder." Despite their theoretical significance as a neat way of representing quantum convolutional codes, they are not well-suited to practical realization. In fact, there is no straightforward way to implement any given pearl-necklace structure. This paper closes the gap between theoretical representation and practical implementation. In our previous work, we presented an efficient algorithm for finding a minimal-memory realization of a pearl-necklace encoder for Calderbank-Shor-Steane (CSS) convolutional codes. This work extends our previous work and presents an algorithm for turning a pearl-necklace encoder for a general (non-CSS) quantum convolutional code into a realizable quantum convolutional encoder. We show that a minimal-memory realization depends on the commutativity relations between the gate strings in the pearl-necklace encoder. We find a realization by means of a weighted graph which details the non-commutative paths through the pearl-necklace. The weight of the longest path in this graph is equal to the minimal amount of memory needed to implement the encoder. The algorithm has a polynomial-time complexity in the number of gate strings in the pearl-necklace encoder.Comment: 16 pages, 5 figures; extends paper arXiv:1004.5179v
    • …
    corecore