169 research outputs found

    Complexity of equivalence relations and preorders from computability theory

    Full text link
    We study the relative complexity of equivalence relations and preorders from computability theory and complexity theory. Given binary relations R,SR, S, a componentwise reducibility is defined by R\le S \iff \ex f \, \forall x, y \, [xRy \lra f(x) Sf(y)]. Here ff is taken from a suitable class of effective functions. For us the relations will be on natural numbers, and ff must be computable. We show that there is a Π1\Pi_1-complete equivalence relation, but no Πk\Pi k-complete for k≥2k \ge 2. We show that Σk\Sigma k preorders arising naturally in the above-mentioned areas are Σk\Sigma k-complete. This includes polynomial time mm-reducibility on exponential time sets, which is Σ2\Sigma 2, almost inclusion on r.e.\ sets, which is Σ3\Sigma 3, and Turing reducibility on r.e.\ sets, which is Σ4\Sigma 4.Comment: To appear in J. Symb. Logi

    Total Representations

    Full text link
    Almost all representations considered in computable analysis are partial. We provide arguments in favor of total representations (by elements of the Baire space). Total representations make the well known analogy between numberings and representations closer, unify some terminology, simplify some technical details, suggest interesting open questions and new invariants of topological spaces relevant to computable analysis.Comment: 30 page

    On the relative complexity of hard problems for complexity classes without complete problems

    Get PDF
    AbstractWe show that any recursive sequence of recursive sets which is ascending with respect to the standard polynomial time reducibility notions has no minimal upper bound. As a consequence, any complexity class with certain natural closure properties possesses either complete problems or no easiest hard problems. A further corollary is that, assuming P ≠ NP, the partial ordering of the polynomial time degrees of NP-sets is not complete, and that there are no degree invariant approximations to NP-complete problems

    A Note on Structure and Looking Back Applied to the Relative Complexity of Computable Function

    Get PDF

    Genericity and measure for exponential time

    Get PDF
    AbstractRecently, Lutz [14, 15] introduced a polynomial time bounded version of Lebesgue measure. He and others (see e.g. [11, 13–18, 20]) used this concept to investigate the quantitative structure of Exponential Time (E = DTIME(2lin)). Previously, Ambos-Spies et al. [2, 3] introduced polynomial time bounded genericity concepts and used them for the investigation of structural properties of NP (under appropriate assumptions) and E. Here we relate these concepts to each other. We show that, for any c ⩾ 1, the class of nc-generic sets has p-measure 1. This allows us to simplify and extend certain p-measure 1-results. To illustrate the power of generic sets we take the Small Span Theorem of Juedes and Lutz [11] as an example and prove a generalization for bounded query reductions

    Computation with Advice

    Get PDF
    Computation with advice is suggested as generalization of both computation with discrete advice and Type-2 Nondeterminism. Several embodiments of the generic concept are discussed, and the close connection to Weihrauch reducibility is pointed out. As a novel concept, computability with random advice is studied; which corresponds to correct solutions being guessable with positive probability. In the framework of computation with advice, it is possible to define computational complexity for certain concepts of hypercomputation. Finally, some examples are given which illuminate the interplay of uniform and non-uniform techniques in order to investigate both computability with advice and the Weihrauch lattice
    • …
    corecore