30,949 research outputs found

    Conditions for duality between fluxes and concentrations in biochemical networks

    Get PDF
    Mathematical and computational modelling of biochemical networks is often done in terms of either the concentrations of molecular species or the fluxes of biochemical reactions. When is mathematical modelling from either perspective equivalent to the other? Mathematical duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one manner. We present a novel stoichiometric condition that is necessary and sufficient for duality between unidirectional fluxes and concentrations. Our numerical experiments, with computational models derived from a range of genome-scale biochemical networks, suggest that this flux-concentration duality is a pervasive property of biochemical networks. We also provide a combinatorial characterisation that is sufficient to ensure flux-concentration duality. That is, for every two disjoint sets of molecular species, there is at least one reaction complex that involves species from only one of the two sets. When unidirectional fluxes and molecular species concentrations are dual vectors, this implies that the behaviour of the corresponding biochemical network can be described entirely in terms of either concentrations or unidirectional fluxes

    On functional module detection in metabolic networks

    Get PDF
    Functional modules of metabolic networks are essential for understanding the metabolism of an organism as a whole. With the vast amount of experimental data and the construction of complex and large-scale, often genome-wide, models, the computer-aided identification of functional modules becomes more and more important. Since steady states play a key role in biology, many methods have been developed in that context, for example, elementary flux modes, extreme pathways, transition invariants and place invariants. Metabolic networks can be studied also from the point of view of graph theory, and algorithms for graph decomposition have been applied for the identification of functional modules. A prominent and currently intensively discussed field of methods in graph theory addresses the Q-modularity. In this paper, we recall known concepts of module detection based on the steady-state assumption, focusing on transition-invariants (elementary modes) and their computation as minimal solutions of systems of Diophantine equations. We present the Fourier-Motzkin algorithm in detail. Afterwards, we introduce the Q-modularity as an example for a useful non-steady-state method and its application to metabolic networks. To illustrate and discuss the concepts of invariants and Q-modularity, we apply a part of the central carbon metabolism in potato tubers (Solanum tuberosum) as running example. The intention of the paper is to give a compact presentation of known steady-state concepts from a graph-theoretical viewpoint in the context of network decomposition and reduction and to introduce the application of Q-modularity to metabolic Petri net models

    Singular perturbations and scaling

    Full text link
    Scaling transformations involving a small parameter ({\em degenerate scalings}) are frequently used for ordinary differential equations that model (bio-) chemical reaction networks. They are motivated by quasi-steady state (QSS) of certain chemical species, and ideally lead to slow-fast systems for singular perturbation reductions, in the sense of Tikhonov and Fenichel. In the present paper we discuss properties of such scaling transformations, with regard to their applicability as well as to their determination. Transformations of this type are admissible only when certain consistency conditions are satisfied, and they lead to singular perturbation scenarios only if additional conditions hold, including a further consistency condition on initial values. Given these consistency conditions, two scenarios occur. The first (which we call standard) is well known and corresponds to a classical quasi-steady state (QSS) reduction. Here, scaling may actually be omitted because there exists a singular perturbation reduction for the unscaled system, with a coordinate subspace as critical manifold. For the second (nonstandard) scenario scaling is crucial. Here one may obtain a singular perturbation reduction with the slow manifold having dimension greater than expected from the scaling. For parameter dependent systems we consider the problem to find all possible scalings, and we show that requiring the consistency conditions allows their determination. This lays the groundwork for algorithmic approaches, to be taken up in future work. In the final section we consider some applications. In particular we discuss relevant nonstandard reductions of certain reaction-transport systems

    Reduction of dynamical biochemical reaction networks in computational biology

    Get PDF
    Biochemical networks are used in computational biology, to model the static and dynamical details of systems involved in cell signaling, metabolism, and regulation of gene expression. Parametric and structural uncertainty, as well as combinatorial explosion are strong obstacles against analyzing the dynamics of large models of this type. Multi-scaleness is another property of these networks, that can be used to get past some of these obstacles. Networks with many well separated time scales, can be reduced to simpler networks, in a way that depends only on the orders of magnitude and not on the exact values of the kinetic parameters. The main idea used for such robust simplifications of networks is the concept of dominance among model elements, allowing hierarchical organization of these elements according to their effects on the network dynamics. This concept finds a natural formulation in tropical geometry. We revisit, in the light of these new ideas, the main approaches to model reduction of reaction networks, such as quasi-steady state and quasi-equilibrium approximations, and provide practical recipes for model reduction of linear and nonlinear networks. We also discuss the application of model reduction to backward pruning machine learning techniques

    A Taxonomy of Causality-Based Biological Properties

    Get PDF
    We formally characterize a set of causality-based properties of metabolic networks. This set of properties aims at making precise several notions on the production of metabolites, which are familiar in the biologists' terminology. From a theoretical point of view, biochemical reactions are abstractly represented as causal implications and the produced metabolites as causal consequences of the implication representing the corresponding reaction. The fact that a reactant is produced is represented by means of the chain of reactions that have made it exist. Such representation abstracts away from quantities, stoichiometric and thermodynamic parameters and constitutes the basis for the characterization of our properties. Moreover, we propose an effective method for verifying our properties based on an abstract model of system dynamics. This consists of a new abstract semantics for the system seen as a concurrent network and expressed using the Chemical Ground Form calculus. We illustrate an application of this framework to a portion of a real metabolic pathway

    Under-approximating Cut Sets for Reachability in Large Scale Automata Networks

    Get PDF
    In the scope of discrete finite-state models of interacting components, we present a novel algorithm for identifying sets of local states of components whose activity is necessary for the reachability of a given local state. If all the local states from such a set are disabled in the model, the concerned reachability is impossible. Those sets are referred to as cut sets and are computed from a particular abstract causality structure, so-called Graph of Local Causality, inspired from previous work and generalised here to finite automata networks. The extracted sets of local states form an under-approximation of the complete minimal cut sets of the dynamics: there may exist smaller or additional cut sets for the given reachability. Applied to qualitative models of biological systems, such cut sets provide potential therapeutic targets that are proven to prevent molecules of interest to become active, up to the correctness of the model. Our new method makes tractable the formal analysis of very large scale networks, as illustrated by the computation of cut sets within a Boolean model of biological pathways interactions gathering more than 9000 components
    • 

    corecore