74,173 research outputs found

    Rational Fair Consensus in the GOSSIP Model

    Full text link
    The \emph{rational fair consensus problem} can be informally defined as follows. Consider a network of nn (selfish) \emph{rational agents}, each of them initially supporting a \emph{color} chosen from a finite set Σ \Sigma. The goal is to design a protocol that leads the network to a stable monochromatic configuration (i.e. a consensus) such that the probability that the winning color is cc is equal to the fraction of the agents that initially support cc, for any cΣc \in \Sigma. Furthermore, this fairness property must be guaranteed (with high probability) even in presence of any fixed \emph{coalition} of rational agents that may deviate from the protocol in order to increase the winning probability of their supported colors. A protocol having this property, in presence of coalitions of size at most tt, is said to be a \emph{whp\,-tt-strong equilibrium}. We investigate, for the first time, the rational fair consensus problem in the GOSSIP communication model where, at every round, every agent can actively contact at most one neighbor via a \emph{push//pull} operation. We provide a randomized GOSSIP protocol that, starting from any initial color configuration of the complete graph, achieves rational fair consensus within O(logn)O(\log n) rounds using messages of O(log2n)O(\log^2n) size, w.h.p. More in details, we prove that our protocol is a whp\,-tt-strong equilibrium for any t=o(n/logn)t = o(n/\log n) and, moreover, it tolerates worst-case permanent faults provided that the number of non-faulty agents is Ω(n)\Omega(n). As far as we know, our protocol is the first solution which avoids any all-to-all communication, thus resulting in o(n2)o(n^2) message complexity.Comment: Accepted at IPDPS'1

    Optimizing simulation on shared-memory platforms: The smart cities case

    Get PDF
    Modern advancements in computing architectures have been accompanied by new emergent paradigms to run Parallel Discrete Event Simulation models efficiently. Indeed, many new paradigms to effectively use the available underlying hardware have been proposed in the literature. Among these, the Share-Everything paradigm tackles massively-parallel shared-memory machines, in order to support speculative simulation by taking into account the limits and benefits related to this family of architectures. Previous results have shown how this paradigm outperforms traditional speculative strategies (such as data-separated Time Warp systems) whenever the granularity of executed events is small. In this paper, we show performance implications of this simulation-engine organization when the simulation models have a variable granularity. To this end, we have selected a traffic model, tailored for smart cities-oriented simulation. Our assessment illustrates the effects of the various tuning parameters related to the approach, opening to a higher understanding of this innovative paradigm

    On Fault Diagnosis of random Free-choice Petri Nets

    Get PDF
    This paper presents an on-line diagnosis algorithm for Petri nets where a priori probabilistic knowledge about the plant operation is available. We follow the method developed by Benveniste, Fabre, and Haar to assign probabilities to configurations in a net unfolding thus avoiding the need for randomizing all concurrent interleavings of transitions. We consider different settings of the diagnosis problem, including estimating the likelihood that a fault may have happened prior to the most recent observed event, the likelihood that a fault will have happened prior to the next observed event. A novel problem formulation treated in this paper considers deterministic diagnosis of faults that occurred prior to the most recent observed event, and simultaneous calculation of the likelihood that a fault will occur prior to the next observed event

    On Conditional Decomposability

    Full text link
    The requirement of a language to be conditionally decomposable is imposed on a specification language in the coordination supervisory control framework of discrete-event systems. In this paper, we present a polynomial-time algorithm for the verification whether a language is conditionally decomposable with respect to given alphabets. Moreover, we also present a polynomial-time algorithm to extend the common alphabet so that the language becomes conditionally decomposable. A relationship of conditional decomposability to nonblockingness of modular discrete-event systems is also discussed in this paper in the general settings. It is shown that conditional decomposability is a weaker condition than nonblockingness.Comment: A few minor correction
    corecore