3,862 research outputs found

    Nonsquare Spectral Factorization for Nonlinear Control Systems

    Get PDF
    This paper considers nonsquare spectral factorization of nonlinear input affine state space systems in continuous time. More specifically, we obtain a parametrization of nonsquare spectral factors in terms of invariant Lagrangian submanifolds and associated solutions of Hamilton–Jacobi inequalities. This inequality is a nonlinear analogue of the bounded real lemma and the control algebraic Riccati inequality. By way of an application, we discuss an alternative characterization of minimum and maximum phase spectral factors and introduce the notion of a rigid nonlinear system.

    From Monge to Higgs: a survey of distance computations in noncommutative geometry

    Full text link
    This is a review of explicit computations of Connes distance in noncommutative geometry, covering finite dimensional spectral triples, almost-commutative geometries, and spectral triples on the algebra of compact operators. Several applications to physics are covered, like the metric interpretation of the Higgs field, and the comparison of Connes distance with the minimal length that emerges in various models of quantum spacetime. Links with other areas of mathematics are studied, in particular the horizontal distance in sub-Riemannian geometry. The interpretation of Connes distance as a noncommutative version of the Monge-Kantorovich metric in optimal transport is also discussed.Comment: Proceedings of the workshop "Noncommutative Geometry and Optimal Transport", Besan\c{c}on november 201

    Classification of Finite Spectral Triples

    Get PDF
    It is known that the spin structure on a Riemannian manifold can be extended to noncommutative geometry using the notion of a spectral triple. For finite geometries, the corresponding finite spectral triples are completely described in terms of matrices and classified using diagrams. When tensorized with the ordinary space-time geometry, finite spectral triples give rise to Yang-Mills theories with spontaneous symmetry breaking, whose characteristic features are given within the diagrammatic approach: vertices of the diagram correspond to gauge multiplets of chiral fermions and links to Yukawa couplings.Comment: Latex, 29 pages with 2 figures, reference adde

    Spectral triples and the super-Virasoro algebra

    Get PDF
    We construct infinite dimensional spectral triples associated with representations of the super-Virasoro algebra. In particular the irreducible, unitary positive energy representation of the Ramond algebra with central charge c and minimal lowest weight h=c/24 is graded and gives rise to a net of even theta-summable spectral triples with non-zero Fredholm index. The irreducible unitary positive energy representations of the Neveu-Schwarz algebra give rise to nets of even theta-summable generalised spectral triples where there is no Dirac operator but only a superderivation.Comment: 27 pages; v2: a comment concerning the difficulty in defining cyclic cocycles in the NS case have been adde

    Flows of constant mean curvature tori in the 3-sphere: The equivariant case

    Full text link
    We present a deformation for constant mean curvature tori in the 3-sphere. We show that the moduli space of equivariant constant mean curvature tori in the 3-sphere is connected, and we classify the minimal, the embedded, and the Alexandrov embedded tori therein. We conclude with an instability result.Comment: v2: 33 pages, 9 figures. Instability result adde

    Geometry of Quantum Spheres

    Full text link
    Spectral triples on the q-deformed spheres of dimension two and three are reviewed.Comment: 23 pages, revie

    On orthogonal tensors and best rank-one approximation ratio

    Full text link
    As is well known, the smallest possible ratio between the spectral norm and the Frobenius norm of an m×nm \times n matrix with mnm \le n is 1/m1/\sqrt{m} and is (up to scalar scaling) attained only by matrices having pairwise orthonormal rows. In the present paper, the smallest possible ratio between spectral and Frobenius norms of n1××ndn_1 \times \dots \times n_d tensors of order dd, also called the best rank-one approximation ratio in the literature, is investigated. The exact value is not known for most configurations of n1ndn_1 \le \dots \le n_d. Using a natural definition of orthogonal tensors over the real field (resp., unitary tensors over the complex field), it is shown that the obvious lower bound 1/n1nd11/\sqrt{n_1 \cdots n_{d-1}} is attained if and only if a tensor is orthogonal (resp., unitary) up to scaling. Whether or not orthogonal or unitary tensors exist depends on the dimensions n1,,ndn_1,\dots,n_d and the field. A connection between the (non)existence of real orthogonal tensors of order three and the classical Hurwitz problem on composition algebras can be established: existence of orthogonal tensors of size ×m×n\ell \times m \times n is equivalent to the admissibility of the triple [,m,n][\ell,m,n] to the Hurwitz problem. Some implications for higher-order tensors are then given. For instance, real orthogonal n××nn \times \dots \times n tensors of order d3d \ge 3 do exist, but only when n=1,2,4,8n = 1,2,4,8. In the complex case, the situation is more drastic: unitary tensors of size ×m×n\ell \times m \times n with mn\ell \le m \le n exist only when mn\ell m \le n. Finally, some numerical illustrations for spectral norm computation are presented

    A walk in the noncommutative garden

    Get PDF
    This text is written for the volume of the school/conference "Noncommutative Geometry 2005" held at IPM Tehran. It gives a survey of methods and results in noncommutative geometry, based on a discussion of significant examples of noncommutative spaces in geometry, number theory, and physics. The paper also contains an outline (the ``Tehran program'') of ongoing joint work with Consani on the noncommutative geometry of the adeles class space and its relation to number theoretic questions.Comment: 106 pages, LaTeX, 23 figure
    corecore