3,763 research outputs found

    The SIC Question: History and State of Play

    Full text link
    Recent years have seen significant advances in the study of symmetric informationally complete (SIC) quantum measurements, also known as maximal sets of complex equiangular lines. Previously, the published record contained solutions up to dimension 67, and was with high confidence complete up through dimension 50. Computer calculations have now furnished solutions in all dimensions up to 151, and in several cases beyond that, as large as dimension 844. These new solutions exhibit an additional type of symmetry beyond the basic definition of a SIC, and so verify a conjecture of Zauner in many new cases. The solutions in dimensions 68 through 121 were obtained by Andrew Scott, and his catalogue of distinct solutions is, with high confidence, complete up to dimension 90. Additional results in dimensions 122 through 151 were calculated by the authors using Scott's code. We recap the history of the problem, outline how the numerical searches were done, and pose some conjectures on how the search technique could be improved. In order to facilitate communication across disciplinary boundaries, we also present a comprehensive bibliography of SIC research.Comment: 16 pages, 1 figure, many references; v3: updating bibliography, dimension eight hundred forty fou

    Conjugate Projective Limits

    Full text link
    We characterize conjugate nonparametric Bayesian models as projective limits of conjugate, finite-dimensional Bayesian models. In particular, we identify a large class of nonparametric models representable as infinite-dimensional analogues of exponential family distributions and their canonical conjugate priors. This class contains most models studied in the literature, including Dirichlet processes and Gaussian process regression models. To derive these results, we introduce a representation of infinite-dimensional Bayesian models by projective limits of regular conditional probabilities. We show under which conditions the nonparametric model itself, its sufficient statistics, and -- if they exist -- conjugate updates of the posterior are projective limits of their respective finite-dimensional counterparts. We illustrate our results both by application to existing nonparametric models and by construction of a model on infinite permutations.Comment: 49 pages; improved version: revised proof of theorem 3 (results unchanged), discussion added, exposition revise

    A Quantum Rosetta Stone for Interferometry

    Get PDF
    Heisenberg-limited measurement protocols can be used to gain an increase in measurement precision over classical protocols. Such measurements can be implemented using, e.g., optical Mach-Zehnder interferometers and Ramsey spectroscopes. We address the formal equivalence between the Mach-Zehnder interferometer, the Ramsey spectroscope, and the discrete Fourier transform. Based on this equivalence we introduce the ``quantum Rosetta stone'', and we describe a projective-measurement scheme for generating the desired correlations between the interferometric input states in order to achieve Heisenberg-limited sensitivity. The Rosetta stone then tells us the same method should work in atom spectroscopy.Comment: 8 pages, 4 figure

    What does the operator algebra of quantum statistics tell us about the objective causes of observable effects?

    Full text link
    Quantum physics can only make statistical predictions about possible measurement outcomes, and these predictions originate from an operator algebra that is fundamentally different from the conventional definition of probability as a subjective lack of information regarding the physical reality of the system. In the present paper, I explore how the operator formalism accommodates the vast number of possible states and measurements by characterizing its essential function as a description of causality relations between initial conditions and subsequent observations. It is shown that any complete description of causality must involve non-positive statistical elements that cannot be associated with any directly observable effects. The necessity of non-positive elements is demonstrated by the uniquely defined mathematical description of ideal correlations which explains the physics of maximally entangled states, quantum teleportation and quantum cloning. The operator formalism thus modifies the concept of causality by providing a universally valid description of deterministic relations between initial states and subsequent observations that cannot be expressed in terms of directly observable measurement outcomes. Instead, the identifiable elements of causality are necessarily non-positive and hence unobservable. The validity of the operator algebra therefore indicates that a consistent explanation of the various uncertainty limited phenomena associated with physical objects is only possible if we learn to accept the fact that the elements of causality cannot be reconciled with a continuation of observable reality in the physical object.Comment: 13 pages, feature article for the special issue of Entropy on Quantum Probability, Statistics and Control. Improved explanation of the U_SWAP equivalence in Eq.(11) and added comments and references in the section on quasi-probabilitie

    Group theoretic, Lie algebraic and Jordan algebraic formulations of the SIC existence problem

    Full text link
    Although symmetric informationally complete positive operator valued measures (SIC POVMs, or SICs for short) have been constructed in every dimension up to 67, a general existence proof remains elusive. The purpose of this paper is to show that the SIC existence problem is equivalent to three other, on the face of it quite different problems. Although it is still not clear whether these reformulations of the problem will make it more tractable, we believe that the fact that SICs have these connections to other areas of mathematics is of some intrinsic interest. Specifically, we reformulate the SIC problem in terms of (1) Lie groups, (2) Lie algebras and (3) Jordan algebras (the second result being a greatly strengthened version of one previously obtained by Appleby, Flammia and Fuchs). The connection between these three reformulations is non-trivial: It is not easy to demonstrate their equivalence directly, without appealing to their common equivalence to SIC existence. In the course of our analysis we obtain a number of other results which may be of some independent interest.Comment: 36 pages, to appear in Quantum Inf. Compu

    Robot Vision in the Language of Geometric Algebra

    Get PDF

    Schur-Weyl Duality for the Clifford Group with Applications: Property Testing, a Robust Hudson Theorem, and de Finetti Representations

    Get PDF
    Schur-Weyl duality is a ubiquitous tool in quantum information. At its heart is the statement that the space of operators that commute with the tensor powers of all unitaries is spanned by the permutations of the tensor factors. In this work, we describe a similar duality theory for tensor powers of Clifford unitaries. The Clifford group is a central object in many subfields of quantum information, most prominently in the theory of fault-tolerance. The duality theory has a simple and clean description in terms of finite geometries. We demonstrate its effectiveness in several applications: (1) We resolve an open problem in quantum property testing by showing that "stabilizerness" is efficiently testable: There is a protocol that, given access to six copies of an unknown state, can determine whether it is a stabilizer state, or whether it is far away from the set of stabilizer states. We give a related membership test for the Clifford group. (2) We find that tensor powers of stabilizer states have an increased symmetry group. We provide corresponding de Finetti theorems, showing that the reductions of arbitrary states with this symmetry are well-approximated by mixtures of stabilizer tensor powers (in some cases, exponentially well). (3) We show that the distance of a pure state to the set of stabilizers can be lower-bounded in terms of the sum-negativity of its Wigner function. This gives a new quantitative meaning to the sum-negativity (and the related mana) -- a measure relevant to fault-tolerant quantum computation. The result constitutes a robust generalization of the discrete Hudson theorem. (4) We show that complex projective designs of arbitrary order can be obtained from a finite number (independent of the number of qudits) of Clifford orbits. To prove this result, we give explicit formulas for arbitrary moments of random stabilizer states.Comment: 60 pages, 2 figure

    On the coexistence of position and momentum observables

    Full text link
    We investigate the problem of coexistence of position and momentum observables. We characterize those pairs of position and momentum observables which have a joint observable
    corecore