3,202 research outputs found

    Research and technology 1991 annual report

    Get PDF
    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, NASA Kennedy is placing increasing emphasis on the center's research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safer, more efficient, and more economical execution of the current mission, the technical tools are being developed which are needed to execute the center's mission relative to future programs. The Engineering Development Directorate encompasses most of the labs and other center resources that are key elements of research and technology program implementation and is responsible for implementation of the majority of the projects in this Kennedy Space Center 1991 annual report

    Cells in Space

    Get PDF
    Discussions and presentations addressed three aspects of cell research in space: the suitability of the cell as a subject in microgravity experiments, the requirements for generic flight hardware to support cell research, and the potential for collaboration between academia, industry, and government to develop these studies in space. Synopses are given for the presentations and follow-on discussions at the conference and papers are presented from which the presentations were based. An Executive Summary outlines the recommendations and conclusions generated at the conference

    The 1990 Johnson Space Center bibliography of scientific and technical papers

    Get PDF
    Abstracts are presented of scientific and technical papers written and/or presented by L. B. Johnson Space Center (JSC) authors, including civil servants, contractors, and grantees, during the calendar year of 1990. Citations include conference and symposium presentations, papers published in proceedings or other collective works, seminars, and workshop results, NASA formal report series (including contractually required final reports), and articles published in professional journals

    Toward Biologically-Inspired Self-Healing, Resilient Architectures for Digital Instrumentation and Control Systems and Embedded Devices

    Get PDF
    Digital Instrumentation and Control (I&C) systems in safety-related applications of next generation industrial automation systems require high levels of resilience against different fault classes. One of the more essential concepts for achieving this goal is the notion of resilient and survivable digital I&C systems. In recent years, self-healing concepts based on biological physiology have received attention for the design of robust digital systems. However, many of these approaches have not been architected from the outset with safety in mind, nor have they been targeted for the automation community where a significant need exists. This dissertation presents a new self-healing digital I&C architecture called BioSymPLe, inspired from the way nature responds, defends and heals: the stem cells in the immune system of living organisms, the life cycle of the living cell, and the pathway from Deoxyribonucleic acid (DNA) to protein. The BioSymPLe architecture is integrating biological concepts, fault tolerance techniques, and operational schematics for the international standard IEC 61131-3 to facilitate adoption in the automation industry. BioSymPLe is organized into three hierarchical levels: the local function migration layer from the top side, the critical service layer in the middle, and the global function migration layer from the bottom side. The local layer is used to monitor the correct execution of functions at the cellular level and to activate healing mechanisms at the critical service level. The critical layer is allocating a group of functional B cells which represent the building block that executes the intended functionality of critical application based on the expression for DNA genetic codes stored inside each cell. The global layer uses a concept of embryonic stem cells by differentiating these type of cells to repair the faulty T cells and supervising all repair mechanisms. Finally, two industrial applications have been mapped on the proposed architecture, which are capable of tolerating a significant number of faults (transient, permanent, and hardware common cause failures CCFs) that can stem from environmental disturbances and we believe the nexus of its concepts can positively impact the next generation of critical systems in the automation industry

    ANTIMICROBIAL EFFECT OF NEW RESTORATIVE DENTAL MATERIAL INCORPORATING SILVER NANOPARTICLES

    Get PDF
    Secondary or recurrent caries are dental lesions originated at the margins of an existing restoration, and are considered the most common reason for restoration failure. Usually, these lesions are histologically similar to the primary caries and can be difficult to detect unless somewhat advanced, resulting in a considerable loss of tooth structure. Over the past decades, resin-based dental materials have been used in restorative dentistry for their excellent esthetics and improved mechanical performance. However, they represent potential sources of carbon and energy for microorganisms including oral bacteria and fungi residual in the dental cavity. In addition, cariogenic bacteria can infiltrate the restoration-tooth margins compromise the restoration’s longevity. Because caries at the restoration margins is a main reason for restoration failures, it would be highly desirable for the composite and bonding agent to possess antibacterial capabilities. Novel antibacterial dental materials were developed by introducing quaternary ammonium monomers, including 12-methacryloyloxydodecylpyridinium bromide (MDPB), dimethylaminohexadecyl methacrylate (DMAHDM), and dimethylaminododecyl methacrylate (DMADDM). These monomers can form covalent bonds with the polymer matrix and be immobilized in the resin-based materials, representing a non-released, contact-killing agent. Several other antimicrobial formulations were also developed, including a methacryloxylethylcetyl dimethyl ammonium chloride (DMAE-CB) containing adhesive, quaternary ammonium polyethylenimine (PEI) nanoparticles for antimicrobial dental composites, antibacterial glass ionomer cements, and antibacterial nanocomposites and bonding agents incorporating a quaternary ammonium dimethacrylate (QADM). Quaternary ammonium acrylate (QAM) resins possess positively-charged quaternary amine N+ which can interact with the negatively-charged membrane of bacteria, leading to membrane disruption and cytoplasm leakage. It is postulated that long-chained quaternary ammonium compounds can be especially effective by inserting into the bacterial membrane, resulting in physical disruption and bacteria death. Aside from the antibacterial monomers added to the resin matrix, an alternative approach is to add silver nanoparticles. Indeed, silver (Ag) is known for its antimicrobial activity against a diverse group of bacteria and has been used for many years as an antimicrobial substance in the medical field. Composite containing Ag particles with long-lasting antibacterial activity have been manufactured and observed to inhibit S. mutans growth . In addition, resins containing Ag nanoparticles were able to inhibit biofilm viability. Although the restorative materials had significant evolvement in the past few decades, the high rates of treatment failure suggest that the current restorative approaches are not yet optimized and have a potential for improvement. The aim of this work is to synthesize and evaluate new bioactive and antibacterial composite materials based on photo-activated Bis-GMA/TEGDMA matrix, containing an hydrotalcite-like compound intercalated with Ag nanoparticles as filler. We have obtained a dental resin with improved physical and biological properties and, in addition, able to release low amount of silver in a controlled and tunable way for a long period of time. In contrast to the conventional and resin-modified glass-ionomers, our CR-Agx were able to release silver ions when intraoral pH values drop below the critical pH of 5.5, counteracting the demineralization process of the tooth surface. The caries protective effect of these materials may be related to the material’s ability to release adequate amounts of silver ions for sustained periods of time and during acidic attack

    Ancient and historical systems

    Get PDF

    Aerospace Medicine and Biology. A continuing bibliography (Supplement 226)

    Get PDF
    This bibliography lists 129 reports, articles, and other documents introduced into the NASA scientific and technical information system in November 1981
    • …
    corecore