502 research outputs found

    Fock factorizations, and decompositions of the L2L^2 spaces over general Levy processes

    Full text link
    We explicitly construct and study an isometry between the spaces of square integrable functionals of an arbitrary Levy process and a vector-valued Gaussian white noise. In particular, we obtain explicit formulas for this isometry at the level of multiplicative functionals and at the level of orthogonal decompositions, as well as find its kernel. We consider in detail the central special case: the isometry between the L2L^2 spaces over a Poisson process and the corresponding white noise. The key role in our considerations is played by the notion of measure and Hilbert factorizations and related notions of multiplicative and additive functionals and logarithm. The obtained results allow us to introduce a canonical Fock structure (an analogue of the Wiener--Ito decomposition) in the L2L^2 space over an arbitrary Levy process. An application to the representation theory of current groups is considered. An example of a non-Fock factorization is given.Comment: 35 pages; LaTeX; to appear in Russian Math. Survey

    Gaussian fluctuations of Young diagrams and structure constants of Jack characters

    Full text link
    In this paper, we consider a deformation of Plancherel measure linked to Jack polynomials. Our main result is the description of the first and second-order asymptotics of the bulk of a random Young diagram under this distribution, which extends celebrated results of Vershik-Kerov and Logan-Shepp (for the first order asymptotics) and Kerov (for the second order asymptotics). This gives more evidence of the connection with Gaussian β\beta-ensemble, already suggested by some work of Matsumoto. Our main tool is a polynomiality result for the structure constant of some quantities that we call Jack characters, recently introduced by Lassalle. We believe that this result is also interested in itself and we give several other applications of it.Comment: 71 pages. Minor modifications from version 1. An extended abstract of this work, with significantly fewer results and a different title, is available as arXiv:1201.180

    A Hybrid of Darboux's Method and Singularity Analysis in Combinatorial Asymptotics

    Get PDF
    A ``hybrid method'', dedicated to asymptotic coefficient extraction in combinatorial generating functions, is presented, which combines Darboux's method and singularity analysis theory. This hybrid method applies to functions that remain of moderate growth near the unit circle and satisfy suitable smoothness assumptions--this, even in the case when the unit circle is a natural boundary. A prime application is to coefficients of several types of infinite product generating functions, for which full asymptotic expansions (involving periodic fluctuations at higher orders) can be derived. Examples relative to permutations, trees, and polynomials over finite fields are treated in this way.Comment: 31 page
    corecore