47,508 research outputs found

    Continuation-passing Style Models Complete for Intuitionistic Logic

    Get PDF
    A class of models is presented, in the form of continuation monads polymorphic for first-order individuals, that is sound and complete for minimal intuitionistic predicate logic. The proofs of soundness and completeness are constructive and the computational content of their composition is, in particular, a β\beta-normalisation-by-evaluation program for simply typed lambda calculus with sum types. Although the inspiration comes from Danvy's type-directed partial evaluator for the same lambda calculus, the there essential use of delimited control operators (i.e. computational effects) is avoided. The role of polymorphism is crucial -- dropping it allows one to obtain a notion of model complete for classical predicate logic. The connection between ours and Kripke models is made through a strengthening of the Double-negation Shift schema

    A Direct Version of Veldman's Proof of Open Induction on Cantor Space via Delimited Control Operators

    Get PDF
    First, we reconstruct Wim Veldman's result that Open Induction on Cantor space can be derived from Double-negation Shift and Markov's Principle. In doing this, we notice that one has to use a countable choice axiom in the proof and that Markov's Principle is replaceable by slightly strengthening the Double-negation Shift schema. We show that this strengthened version of Double-negation Shift can nonetheless be derived in a constructive intermediate logic based on delimited control operators, extended with axioms for higher-type Heyting Arithmetic. We formalize the argument and thus obtain a proof term that directly derives Open Induction on Cantor space by the shift and reset delimited control operators of Danvy and Filinski

    Virtual Evidence: A Constructive Semantics for Classical Logics

    Full text link
    This article presents a computational semantics for classical logic using constructive type theory. Such semantics seems impossible because classical logic allows the Law of Excluded Middle (LEM), not accepted in constructive logic since it does not have computational meaning. However, the apparently oracular powers expressed in the LEM, that for any proposition P either it or its negation, not P, is true can also be explained in terms of constructive evidence that does not refer to "oracles for truth." Types with virtual evidence and the constructive impossibility of negative evidence provide sufficient semantic grounds for classical truth and have a simple computational meaning. This idea is formalized using refinement types, a concept of constructive type theory used since 1984 and explained here. A new axiom creating virtual evidence fully retains the constructive meaning of the logical operators in classical contexts. Key Words: classical logic, constructive logic, intuitionistic logic, propositions-as-types, constructive type theory, refinement types, double negation translation, computational content, virtual evidenc

    Analysis of an experimental quantum logic gate by complementary classical operations

    Full text link
    Quantum logic gates can perform calculations much more efficiently than their classical counterparts. However, the level of control needed to obtain a reliable quantum operation is correspondingly higher. In order to evaluate the performance of experimental quantum gates, it is therefore necessary to identify the essential features that indicate quantum coherent operation. In this paper, we show that an efficient characterization of an experimental device can be obtained by investigating the classical logic operations on a pair of complementary basis sets. It is then possible to obtain reliable predictions about the quantum coherent operations of the gate such as entanglement generation and Bell state discrimination even without performing these operations directly.Comment: 14 pages, 1 figure, 3 tables, Brief Review for Modern Physics Letters A, includes a more detailed analysis of the experimental data in Phys. Rev. Lett. 95, 210506 (2005) (quant-ph/0506263). v2 has minor corrections in layou

    An interpretation of the Sigma-2 fragment of classical Analysis in System T

    Get PDF
    We show that it is possible to define a realizability interpretation for the ÎŁ2\Sigma_2-fragment of classical Analysis using G\"odel's System T only. This supplements a previous result of Schwichtenberg regarding bar recursion at types 0 and 1 by showing how to avoid using bar recursion altogether. Our result is proved via a conservative extension of System T with an operator for composable continuations from the theory of programming languages due to Danvy and Filinski. The fragment of Analysis is therefore essentially constructive, even in presence of the full Axiom of Choice schema: Weak Church's Rule holds of it in spite of the fact that it is strong enough to refute the formal arithmetical version of Church's Thesis

    Normality operators and Classical Recapture in Extensions of Kleene Logics

    Get PDF
    In this paper, we approach the problem of classical recapture for LP and K3 by using normality operators. These generalize the consistency and determinedness operators from Logics of Formal Inconsistency and Underterminedness, by expressing, in any many-valued logic, that a given formula has a classical truth value (0 or 1). In particular, in the rst part of the paper we introduce the logics LPe and Ke3 , which extends LP and K3 with normality operators, and we establish a classical recapture result based on the two logics. In the second part of the paper, we compare the approach in terms of normality operators with an established approach to classical recapture, namely minimal inconsistency. Finally, we discuss technical issues connecting LPe and Ke3 to the tradition of Logics of Formal Inconsistency and Underterminedness

    Non-normal modalities in variants of Linear Logic

    Get PDF
    This article presents modal versions of resource-conscious logics. We concentrate on extensions of variants of Linear Logic with one minimal non-normal modality. In earlier work, where we investigated agency in multi-agent systems, we have shown that the results scale up to logics with multiple non-minimal modalities. Here, we start with the language of propositional intuitionistic Linear Logic without the additive disjunction, to which we add a modality. We provide an interpretation of this language on a class of Kripke resource models extended with a neighbourhood function: modal Kripke resource models. We propose a Hilbert-style axiomatization and a Gentzen-style sequent calculus. We show that the proof theories are sound and complete with respect to the class of modal Kripke resource models. We show that the sequent calculus admits cut elimination and that proof-search is in PSPACE. We then show how to extend the results when non-commutative connectives are added to the language. Finally, we put the logical framework to use by instantiating it as logics of agency. In particular, we propose a logic to reason about the resource-sensitive use of artefacts and illustrate it with a variety of examples
    • …
    corecore