19,149 research outputs found

    Do Hard SAT-Related Reasoning Tasks Become Easier in the Krom Fragment?

    Full text link
    Many reasoning problems are based on the problem of satisfiability (SAT). While SAT itself becomes easy when restricting the structure of the formulas in a certain way, the situation is more opaque for more involved decision problems. We consider here the CardMinSat problem which asks, given a propositional formula ϕ\phi and an atom xx, whether xx is true in some cardinality-minimal model of ϕ\phi. This problem is easy for the Horn fragment, but, as we will show in this paper, remains Θ2\Theta_2-complete (and thus NP\mathrm{NP}-hard) for the Krom fragment (which is given by formulas in CNF where clauses have at most two literals). We will make use of this fact to study the complexity of reasoning tasks in belief revision and logic-based abduction and show that, while in some cases the restriction to Krom formulas leads to a decrease of complexity, in others it does not. We thus also consider the CardMinSat problem with respect to additional restrictions to Krom formulas towards a better understanding of the tractability frontier of such problems

    Quantified Conjunctive Queries on Partially Ordered Sets

    Full text link
    We study the computational problem of checking whether a quantified conjunctive query (a first-order sentence built using only conjunction as Boolean connective) is true in a finite poset (a reflexive, antisymmetric, and transitive directed graph). We prove that the problem is already NP-hard on a certain fixed poset, and investigate structural properties of posets yielding fixed-parameter tractability when the problem is parameterized by the query. Our main algorithmic result is that model checking quantified conjunctive queries on posets of bounded width is fixed-parameter tractable (the width of a poset is the maximum size of a subset of pairwise incomparable elements). We complement our algorithmic result by complexity results with respect to classes of finite posets in a hierarchy of natural poset invariants, establishing its tightness in this sense.Comment: Accepted at IPEC 201

    SAT-based Explicit LTL Reasoning

    Full text link
    We present here a new explicit reasoning framework for linear temporal logic (LTL), which is built on top of propositional satisfiability (SAT) solving. As a proof-of-concept of this framework, we describe a new LTL satisfiability tool, Aalta\_v2.0, which is built on top of the MiniSAT SAT solver. We test the effectiveness of this approach by demonnstrating that Aalta\_v2.0 significantly outperforms all existing LTL satisfiability solvers. Furthermore, we show that the framework can be extended from propositional LTL to assertional LTL (where we allow theory atoms), by replacing MiniSAT with the Z3 SMT solver, and demonstrating that this can yield an exponential improvement in performance

    Interacting via the Heap in the Presence of Recursion

    Full text link
    Almost all modern imperative programming languages include operations for dynamically manipulating the heap, for example by allocating and deallocating objects, and by updating reference fields. In the presence of recursive procedures and local variables the interactions of a program with the heap can become rather complex, as an unbounded number of objects can be allocated either on the call stack using local variables, or, anonymously, on the heap using reference fields. As such a static analysis is, in general, undecidable. In this paper we study the verification of recursive programs with unbounded allocation of objects, in a simple imperative language for heap manipulation. We present an improved semantics for this language, using an abstraction that is precise. For any program with a bounded visible heap, meaning that the number of objects reachable from variables at any point of execution is bounded, this abstraction is a finitary representation of its behaviour, even though an unbounded number of objects can appear in the state. As a consequence, for such programs model checking is decidable. Finally we introduce a specification language for temporal properties of the heap, and discuss model checking these properties against heap-manipulating programs.Comment: In Proceedings ICE 2012, arXiv:1212.345

    Safety Model Checking with Complementary Approximations

    Full text link
    Formal verification techniques such as model checking, are becoming popular in hardware design. SAT-based model checking techniques such as IC3/PDR, have gained a significant success in hardware industry. In this paper, we present a new framework for SAT-based safety model checking, named Complementary Approximate Reachability (CAR). CAR is based on standard reachability analysis, but instead of maintaining a single sequence of reachable- state sets, CAR maintains two sequences of over- and under- approximate reachable-state sets, checking safety and unsafety at the same time. To construct the two sequences, CAR uses standard Boolean-reasoning algorithms, based on satisfiability solving, one to find a satisfying cube of a satisfiable Boolean formula, and one to provide a minimal unsatisfiable core of an unsatisfiable Boolean formula. We applied CAR to 548 hardware model-checking instances, and compared its performance with IC3/PDR. Our results show that CAR is able to solve 42 instances that cannot be solved by IC3/PDR. When evaluated against a portfolio that includes IC3/PDR and other approaches, CAR is able to solve 21 instances that the other approaches cannot solve. We conclude that CAR should be considered as a valuable member of any algorithmic portfolio for safety model checking

    NP-Logic Systems and Model-Equivalence Reductions

    Full text link
    In this paper we investigate the existence of model-equivalence reduction between NP-logic systems which are logic systems with model existence problem in NP. It is shown that among all NP-systems with model checking problem in NP, the existentially quantified propositional logic (\exists PF) is maximal with respect to poly-time model-equivalent reduction. However, \exists PF seems not a maximal NP-system in general because there exits a NP-system with model checking problem D^P-complete
    corecore