1,736 research outputs found

    OutFlank Routing: Increasing Throughput in Toroidal Interconnection Networks

    Full text link
    We present a new, deadlock-free, routing scheme for toroidal interconnection networks, called OutFlank Routing (OFR). OFR is an adaptive strategy which exploits non-minimal links, both in the source and in the destination nodes. When minimal links are congested, OFR deroutes packets to carefully chosen intermediate destinations, in order to obtain travel paths which are only an additive constant longer than the shortest ones. Since routing performance is very sensitive to changes in the traffic model or in the router parameters, an accurate discrete-event simulator of the toroidal network has been developed to empirically validate OFR, by comparing it against other relevant routing strategies, over a range of typical real-world traffic patterns. On the 16x16x16 (4096 nodes) simulated network OFR exhibits improvements of the maximum sustained throughput between 14% and 114%, with respect to Adaptive Bubble Routing.Comment: 9 pages, 5 figures, to be presented at ICPADS 201

    Distributed Optimization in Energy Harvesting Sensor Networks with Dynamic In-network Data Processing

    Get PDF
    Energy Harvesting Wireless Sensor Networks (EH- WSNs) have been attracting increasing interest in recent years. Most current EH-WSN approaches focus on sensing and net- working algorithm design, and therefore only consider the energy consumed by sensors and wireless transceivers for sensing and data transmissions respectively. In this paper, we incorporate CPU-intensive edge operations that constitute in-network data processing (e.g. data aggregation/fusion/compression) with sens- ing and networking; to jointly optimize their performance, while ensuring sustainable network operation (i.e. no sensor node runs out of energy). Based on realistic energy and network models, we formulate a stochastic optimization problem, and propose a lightweight on-line algorithm, namely Recycling Wasted Energy (RWE), to solve it. Through rigorous theoretical analysis, we prove that RWE achieves asymptotical optimality, bounded data queue size, and sustainable network operation. We implement RWE on a popular IoT operating system, Contiki OS, and eval- uate its performance using both real-world experiments based on the FIT IoT-LAB testbed, and extensive trace-driven simulations using Cooja. The evaluation results verify our theoretical analysis, and demonstrate that RWE can recycle more than 90% wasted energy caused by battery overflow, and achieve around 300% network utility gain in practical EH-WSNs

    Low Power, Low Delay: Opportunistic Routing meets Duty Cycling

    Get PDF
    Traditionally, routing in wireless sensor networks consists of two steps: First, the routing protocol selects a next hop, and, second, the MAC protocol waits for the intended destination to wake up and receive the data. This design makes it difficult to adapt to link dynamics and introduces delays while waiting for the next hop to wake up. In this paper we introduce ORW, a practical opportunistic routing scheme for wireless sensor networks. In a dutycycled setting, packets are addressed to sets of potential receivers and forwarded by the neighbor that wakes up first and successfully receives the packet. This reduces delay and energy consumption by utilizing all neighbors as potential forwarders. Furthermore, this increases resilience to wireless link dynamics by exploiting spatial diversity. Our results show that ORW reduces radio duty-cycles on average by 50% (up to 90% on individual nodes) and delays by 30% to 90% when compared to the state of the art

    A Switch Architecture for Real-Time Multimedia Communications

    Get PDF
    In this paper we present a switch that can be used to transfer multimedia type of trafJic. The switch provides a guaranteed throughput and a bounded latency. We focus on the design of a prototype Switching Element using the new technology opportunities being offered today. The architecture meets the multimedia requirements but still has a low complexity and needs a minimum amount of hardware. A main item of this paper will be the background of the architectural design decisions made. These include the interconnection topology, buffer organization, routing and scheduling. The implementation of the switching fabric with FPGAs, allows us to experiment with switching mode, routing strategy and scheduling policy in a multimedia environment. The witching elements are interconnected in a Kautz topology. Kautz graphs have interesting properties such as: a small diametec the degree is independent of the network size, the network is fault-tolerant and has a simple routing algorithm

    Network delay control through adaptive queue management

    Get PDF
    Timeliness in delivering packets for delay-sensitive applications is an important QoS (Quality of Service) measure in many systems, notably those that need to provide real-time performance. In such systems, if delay-sensitive traffic is delivered to the destination beyond the deadline, then the packets will be rendered useless and dropped after received at the destination. Bandwidth that is already scarce and shared between network nodes is wasted in relaying these expired packets. This thesis proposes that a deterministic per-hop delay can be achieved by using a dynamic queue threshold concept to bound delay of each node. A deterministic per-hop delay is a key component in guaranteeing a deterministic end-to-end delay. The research aims to develop a generic approach that can constrain network delay of delay-sensitive traffic in a dynamic network. Two adaptive queue management schemes, namely, DTH (Dynamic THreshold) and ADTH (Adaptive DTH) are proposed to realize the claim. Both DTH and ADTH use the dynamic threshold concept to constrain queuing delay so that bounded average queuing delay can be achieved for the former and bounded maximum nodal delay can be achieved for the latter. DTH is an analytical approach, which uses queuing theory with superposition of N MMBP-2 (Markov Modulated Bernoulli Process) arrival processes to obtain a mapping relationship between average queuing delay and an appropriate queuing threshold, for queue management. While ADTH is an measurement-based algorithmic approach that can respond to the time-varying link quality and network dynamics in wireless ad hoc networks to constrain network delay. It manages a queue based on system performance measurements and feedback of error measured against a target delay requirement. Numerical analysis and Matlab simulation have been carried out for DTH for the purposes of validation and performance analysis. While ADTH has been evaluated in NS-2 simulation and implemented in a multi-hop wireless ad hoc network testbed for performance analysis. Results show that DTH and ADTH can constrain network delay based on the specified delay requirements, with higher packet loss as a trade-off

    Submicron Systems Architecture Project: Semiannual Technial Report

    Get PDF
    No abstract available
    • 

    corecore