474 research outputs found

    Printed closely spaced antennas loaded by linear stubs in a mimo style for portable wireless electronic devices

    Get PDF
    An easy-to-manufacture and efficient four-port-printed Multiple Input Multiple Output (MIMO) antenna operating across an ultra-wideband (UWB) region (2.9-13.6 GHz) is proposed and investigated here. The phenomenon of the polarization diversity is used to improve the isolation between MIMO antenna elements by deploying four orthogonal antenna elements. The proposed printed antenna (40 x 40 x 1.524 mm(3)) is made compact by optimizing the circular-shaped radiating components via vertical stubs on top of the initial design to maximally reduce unwanted interaction while placing them together in proximity. The measurements of the prototype MIMO antennas corroborate the simulation performance. The findings are compared to the recent relevant works presented in the literature to show that the proposed antenna is suitable for UWB MIMO applications. The proposed printed UWB MIMO antenna could be a good fit for compact portable wireless electronic devices

    Printed closely spaced antennas loaded by linear stubs in a MIMO style for portable wireless electronic devices

    Get PDF
    This article belongs to the Special Issue Transmit and Receive Techniques for Next Generation Massive MIMO Systems.An easy-to-manufacture and efficient four-port-printed Multiple Input Multiple Output (MIMO) antenna operating across an ultra-wideband (UWB) region (2.9–13.6 GHz) is proposed and investigated here. The phenomenon of the polarization diversity is used to improve the isolation between MIMO antenna elements by deploying four orthogonal antenna elements. The proposed printed antenna (40 × 40 × 1.524 mm3) is made compact by optimizing the circular-shaped radiating components via vertical stubs on top of the initial design to maximally reduce unwanted interaction while placing them together in proximity. The measurements of the prototype MIMO antennas corroborate the simulation performance. The findings are compared to the recent relevant works presented in the literature to show that the proposed antenna is suitable for UWB MIMO applications. The proposed printed UWB MIMO antenna could be a good fit for compact portable wireless electronic devices.This project received funding from Universidad Carlos III de Madrid and the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant 801538. Furthermore, this work was partially supported by the Researchers Supporting Project number (RSP-2021/58), King Saud University, Riyadh, Saudi Arabia

    2009 Index IEEE Antennas and Wireless Propagation Letters Vol. 8

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index

    2008 Index IEEE Transactions on Control Systems Technology Vol. 16

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index

    Novel MIMO Antenna System for Ultra Wideband Applications

    Get PDF
    The design of a 4 x 4 MIMO antenna for UWB communication systems is presented in this study. The single antenna element is comprised of a fractal circular ring structure backed by a modified partial ground plane having dimensions of 30 x 30 mm2. The single antenna element has a wide impedance bandwidth of 9.33 GHz and operates from 2.67 GHz to 12 GHz. Furthermore, the gain of a single antenna element increases as the frequency increases, with a peak realized gain and antenna efficiency of 5 dBi and >75%, respectively. For MIMO applications, a 4 x 4 array is designed and analyzed. The antenna elements are positioned in a plus-shaped configuration to provide pattern as well as polarization diversity. It is worth mentioning that good isolation characteristics are achieved without the utilization of any isolation enhancement network. The proposed MIMO antenna was fabricated and tested, and the results show that it provides UWB response from 2.77 GHz to over 12 GHz. The isolation between the antenna elements is more than 15 dB. Based on performance attributes, it can be said that the proposed design is suitable for UWB MIMO applications.The authors would like to appreciate Universidad Carlos III de Madrid and the European Union’s Horizon 2020 research and innovation programme for the funding of this research work under the Marie Sklodowska-Curie Grant 801538

    A Review on Different Techniques of Mutual Coupling Reduction Between Elements of Any MIMO Antenna. Part 1: DGSs and Parasitic Structures

    Get PDF
    This two-part article presents a review of different techniques of mutual coupling (MC) reduction. MC is a major issue when an array of antennas is densely packed. When the separation between the antennas i

    Four-element ultrawideband textile cross array for dual-spatial and dual-polarization diversity

    Get PDF
    The emergence of miniaturized flexible electronics enables on-duty first responders to collect biometrical and environmental data through multiple on-body sensors, integrated into their clothing. However, gathering these life-saving data would be useless if they cannot set up reliable, preferable high-data-rate, wireless communication links between the sensors and a remote base station. Therefore, we have developed a four-element ultrawideband textile cross array that combines dual-spatial and dual-polarization diversity and is easily deployable in a first responder's garment. The impedance bandwidth of the array equals 1.43 GHz, while mutual coupling between its elements remains below -25 dB. For a maximal bit error rate of 1e-4, the array realizes a diversity gain of 24.81 dB. When applying adaptive subcarrier modulation, the mean throughput per orthogonal frequency division multiplexing (OFDM) subcarrier increases by an extra bit/symbol when comparing fourth- to second-order diversity

    Miniaturized DGS and EBG structures for decoupling multiple antennas on compact wireless terminals

    Get PDF
    MIMO (Multiple Input Multiple Output) technology has been presented to significantly increase the wireless channel capacity and reliability without requiring additional radio spectrum or power. In MIMO systems, multiple antennas are mounted at both the transmitter and the receiver. When this technology is employed for a compact wireless terminal, one of the most challenging tasks is to reduce the high mutual coupling between closely placed antenna array elements. The high mutual coupling produces high correlation between antenna elements and affects the channel capacity of MIMO system. The objectives of this thesis are to design practical miniaturized structures to reduce high mutual coupling for small wireless terminals. The research is conducted in the following areas. Initially, a PIFA design and two-element PIFA array are proposed and optimized to operate at 1.9GHz. A pair of two coupled quarter-wavelength linear slits is inserted in a compact ground plane, resulting in significant reduction of the mutual coupling across antenna operating frequency band. In order to take up less space on the ground plane, instead of the linear slits, miniaturized convoluted slits are implemented between the two closely placed PIFAs. Although the convoluted slits have small area and are positioned close to the edges of the ground plane, the miniaturized convoluted slit structures achieve a reduction of mutual coupling between antenna elements and succeed in reducing the effect of the human body (head and hand) to the antennas. In order to further reduce the size of the slits etched on the compact ground plane, a novel double-layer slit-patch EBG structure is proposed. It consists of a two-layer structure including conducting patches and aperture slits placed on either side of a very thin dielectric layer. They are placed in very close proximity to each other (55ÎĽm). A two-element printed CPW-fed monopole array operating around 2.46GHz and a two-element UWB planar monopole array operating from 3GHz to 6GHz have been employed to investigate the proposed slit-patch EBG structures. The optimized double-layer slit-patch EBG structure yields a significant reduction of the mutual coupling and produces the maximum miniaturization of antenna array. Another novel convoluted slit-patch EBG structure has been presented to reduce the mutual coupling between two PIFAs operating at 1.9GHz. These results demonstrate that the slit-patch EBG structure is a feasible technology to reduce the mutual coupling between multiple antennas for compact wireless terminals

    Antenna Designs for 5G/IoT and Space Applications

    Get PDF
    This book is intended to shed some light on recent advances in antenna design for these new emerging applications and identify further research areas in this exciting field of communications technologies. Considering the specificity of the operational environment, e.g., huge distance, moving support (satellite), huge temperature drift, small dimension with respect to the distance, etc, antennas, are the fundamental device allowing to maintain a constant interoperability between ground station and satellite, or different satellites. High gain, stable (in temperature, and time) performances, long lifecycle are some of the requirements that necessitates special attention with respect to standard designs. The chapters of this book discuss various aspects of the above-mentioned list presenting the view of the authors. Some of the contributors are working strictly in the field (space), so they have a very targeted view on the subjects, while others with a more academic background, proposes futuristic solutions. We hope that interested reader, will find a fertile source of information, that combined with their interest/background will allow efficiently exploiting the combination of these two perspectives
    • …
    corecore