9 research outputs found

    Very Compact Open-Slot Antenna for Wireless Communication Systems

    Get PDF
    A new very compact open slot antenna for wireless communication systems application has been designed and fabricated. With antenna overall dimension of 9.2 × 9.8 mm2, the proposed design can be used in many modern communication devices with size constraints. Experimental measurements have also been performed to validate the performance of the proposed antenna. The measured results show that the antenna provides a wide bandwidth of 48% (5–8.17 GHz) with an average size reduction of about 88% with respect to a conventional microstrip patch antenna

    Transparent and Flexible Radio Frequency (RF) Structures

    Full text link
    With increasing demand for a wearable devices, medical devices, RFID, and small devices, there is a growing interest in the field of transparent and flexible electronics. In order to realize optically transparent and flexible microwave components, novel materials can be used. The combination of new materials and radio frequency (RF) structures can open interesting perspectives for the implementation of cost effective wireless communication system and wearable device design. The transparent and flexible RF structures can facilitate its application in the transparent and curved surfaces. In this dissertation, we present several demonstrations, all based on optically transparent and flexible materials and structures. We firstly demonstrate an optically transparent, flexible, polarization-independent, and broadband microwave absorber. The bow-tie shaped array which possesses double resonances is designed and measured. The combined resonances lead to more than 90% total absorption covering a wide frequency range from 5.8 to 12.2 GHz. Due to the use of thin metal and PDMS, the whole structure is optically transparent and flexible. Secondly, we demonstrate a new method for fabricating transparent and stretchable radiofrequency small antennas by using stretchable micromesh structures. Size reduction is achieved by using the zeroth-order resonant (ZOR) property. The antennas consist of a series of tortuous micromesh structures, which provides a high degree of freedom for stretching when encapsulated in elastomeric polymers and is optically transparent. Accordingly, these antennas can be stretched up to 40% in size without breaking. The resonant frequency of the antennas is linearly reconfigurable from 2.94 GHz to 2.46 GHz upon stretching. Next, we describe an ultra-low profile and flexible triple-polarization antenna. It is realized by using ZOR array antenna with high port-to-port isolation. This flexible antenna is fabricated with a flexible substrate and silver nanowire vias to be used in various wearable applications. Lastly, we demonstrate a dual-band tri-polarized antenna based on half-mode hexagonal (HMH) SIW structure. CRLH HMHSIW antenna and ZOR HMHSIW antenna are designed to have dual-band operating frequencies. This novel antenna can provide much improved wireless communication efficiency for the WBAN system under various incident field angles and polarizations.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147562/1/tjang_1.pd

    Miniaturized Microwave Devices and Antennas for Wearable, Implantable and Wireless Applications

    Full text link
    This thesis presents a number of microwave devices and antennas that maintain high operational efficiency and are compact in size at the same time. One goal of this thesis is to address several miniaturization challenges of antennas and microwave components by using the theoretical principles of metamaterials, Metasurface coupling resonators and stacked radiators, in combination with the elementary antenna and transmission line theory. While innovating novel solutions, standards and specifications of next generation wireless and bio-medical applications were considered to ensure advancement in the respective scientific fields. Compact reconfigurable phase-shifter and a microwave cross-over based on negative-refractive-index transmission-line (NRI-TL) materialist unit cells is presented. A Metasurface based wearable sensor architecture is proposed, containing an electromagnetic band-gap (EBG) structure backed monopole antenna for off-body communication and a fork shaped antenna for efficient radiation towards the human body. A fully parametrized solution for an implantable antenna is proposed using metallic coated stacked substrate layers. Challenges and possible solutions for off-body, on-body, through-body and across-body communication have been investigated with an aid of computationally extensive simulations and experimental verification. Next, miniaturization and implementation of a UWB antenna along with an analytical model to predict the resonance is presented. Lastly, several miniaturized rectifiers designed specifically for efficient wireless power transfer are proposed, experimentally verified, and discussed. The study answered several research questions of applied electromagnetic in the field of bio-medicine and wireless communication.Comment: A thesis submitted for the degree of Ph

    An investigation of nanoscale materials and their incorporation in patch antenna for high frequency applications

    Get PDF
    The rapid development in the polymer-based electronic contribute a strong determination for using these materials as substitute to the high-cost materials commonly used as medium substrate in the fabrication of Microstrip Patch Antenna (MPA). Antenna technology can strongly gain from the utilisation of low-cost, flexible, light weight with suitable fabrication techniques. The uniqueness of this work is the use of variety of common but unexplored different polymer materials such as Polyethylene (PE), Polypropylene (PP), Polyvinyl chloride, (PVC) Polystyrene (PS), Polystyrene fibre (PSF) as the substrates for the design and fabrication of different MPAs for communication and sensing applications in millimetre wave (MMW)region. Electrospinning (ES) technique is used to reconstruct PS and produced PSF material of low dielectric constant. A co-solvent vehicle(comprising 50:50 ratio) of Dichloromethane (DCM) and acetone was utilised with processing condition of solution infusion flow-rate of 60μL/min and an applied voltage of 12± kV yielded rigid PSF substrates. The PSF Produced has complex permittivity of 1.36±5% and a loss tangent of 2.4E-04±4.8E-04 which was measured using Spilt-Post Dielectric Resonators (SPDR) technique at National Physics Laboratory, Teddington, London. A diamond-shaped MPAs on RT Duriod material were simulated and fabricated using photo-lithography for different inner lengths to work in the frequencies range from (1-10 GHz). The resonant frequency is approximated as a function of inner length L1 in the form of a polynomial equation. The fabricated diamond-shaped MPA more compact (physical geometry) as compared with a traditional monopole antenna. This MPAs experimentally measured and have a good agreement with the simulated results. The coplanar waveguide (CPW) diamond-shaped MPA working in the MMW region was designed and fabricated with polymer materials as substrates using thermal evaporation technique and the RF measurement was carried out using Vector Network Analyser (VNA). The resonant frequencies of the CPW diamond shaped MPAs for (PE, PP, PVC, PS and PSF) were found to be 67.5 GHz, 72.36 GHz, 62.41 GHz, 63.25 GHz and 80.58 GHz, respectively. The antenna fabricated on PSF were resonating at higher frequency when compared to the other polymers materials. In adding an air-bridge to the CPW diamond-shaped MPA the resonating frequency increased from ≈55 GHz to≈ 62 GHz. Three different shaped nano-patch antennas (Diamond shaped, diamond shaped array and T-shaped) have been designed, simulated and fabricated on Silicon substrate with DLC deposition using focused Ion Beam (FIB) technique, these antennas were found to resonate at 1.42 THz with (-19 dB return loss), 2.42 THz with (-14 dB return loss) and 1.3 THz with (-45 dB return loss) respectively

    Plasmonic waveguides and nano-antennas for optical communications

    Get PDF
    The field of plasmonics has received great attention during the past years. Plasmonic devices are characterized by their small electrical size which enabled researchers to overcome the challenge of the size mismatch between the bulky photonic devices and the small electronic circuits. Plasmonic metals are characterized by their lossy dielectric nature which is different from the highly conductive classical metals. Consequently, the design of plasmonic devices necessitates upgrading the existing solvers to take into consideration their material properties at the optical frequency range. In this thesis, a plasmonic transmission line mode solver is developed in which the propagation characteristics of plasmonic transmission lines/waveguides are calculated. More specifically, the solver calculates the propagation constant, losses, and mode profile(s) of the propagating mode(s). The transmission lines can have any topology and are assumed to be placed within a stack of flat layers. The solver is developed using the Method of Moments technique which is characterized by its tremendously decreased number of unknowns compared to the finite element/difference methods leading to much faster calculation time. The solver is tested on several plasmonic transmission lines of various topologies, number of metallic strips and/or surrounding media. These transmission lines include rectangular strip, circular strip, triangular strip, U-shaped strip, horizontally coupled strips, and vertically coupled strips. The obtained results are compared with those calculated by the commercial tool “CSTâ€. Very good agreement between both solvers is achieved. The second line presented within this thesis is concerned with the design of plasmonic wire-grid nano-antenna arrays. The basic element of this array is a nano-rod, whose propagation characteristics are first obtained using the developed solver. The arrays are then optimized using “CSTâ€. Within the context of this thesis, three nano-antenna arrays are proposed: a five-element wire-grid array, an eleven-element wire-grid array, and a novel circularly polarized wire-grid array. All of these arrays have high directivity and are suitable for inter-/intra-chip optical communication, where they replace the losing transmission lines

    Factories of the Future

    Get PDF
    Engineering; Industrial engineering; Production engineerin
    corecore