562 research outputs found

    Approximating Spectral Clustering via Sampling: a Review

    Get PDF
    International audienceSpectral clustering refers to a family of well-known unsupervised learning algorithms. Rather than attempting to cluster points in their native domain, one constructs a (usually sparse) similarity graph and computes the principal eigenvec-tors of its Laplacian. The eigenvectors are then interpreted as transformed points and fed into a k-means clustering algorithm. As a result of this non-linear transformation , it becomes possible to use a simple centroid-based algorithm in order to identify non-convex clusters, something that was otherwise impossible. Unfortunately , what makes spectral clustering so successful is also its Achilles heel: forming a graph and computing its dominant eigenvectors can be computationally prohibitive when dealing with more that a few tens of thousands of points. In this chapter, we review the principal research efforts aiming to reduce this computational cost. We focus on methods that come with a theoretical control on the clustering performance and incorporate some form of sampling in their operation. Such methods abound in the machine learning, numerical linear algebra, and graph signal processing literature and, amongst others, include Nyström-approximation, landmarks, coarsening, coresets, and compressive spectral clustering. We present the approximation guarantees available for each and discuss practical merits and limitations. Surprisingly, despite the breadth of the literature explored, we conclude that there is still a gap between theory and practice: the most scalable methods are only intuitively motivated or loosely controlled, whereas those that come with end-to-end guarantees rely on strong assumptions or enable a limited gain of computation time

    Approximating Spectral Clustering via Sampling: a Review

    Get PDF
    Spectral clustering refers to a family of unsupervised learning algorithms that compute a spectral embedding of the original data based on the eigenvectors of a similarity graph. This non-linear transformation of the data is both the key of these algorithms' success and their Achilles heel: forming a graph and computing its dominant eigenvectors can indeed be computationally prohibitive when dealing with more that a few tens of thousands of points. In this paper, we review the principal research efforts aiming to reduce this computational cost. We focus on methods that come with a theoretical control on the clustering performance and incorporate some form of sampling in their operation. Such methods abound in the machine learning, numerical linear algebra, and graph signal processing literature and, amongst others, include Nystr\"om-approximation, landmarks, coarsening, coresets, and compressive spectral clustering. We present the approximation guarantees available for each and discuss practical merits and limitations. Surprisingly, despite the breadth of the literature explored, we conclude that there is still a gap between theory and practice: the most scalable methods are only intuitively motivated or loosely controlled, whereas those that come with end-to-end guarantees rely on strong assumptions or enable a limited gain of computation time

    Hyperspectral Remote Sensing Data Analysis and Future Challenges

    Full text link

    Relational Learning with Hypergraphs

    Get PDF

    On cross-domain social semantic learning

    Get PDF
    Approximately 2.4 billion people are now connected to the Internet, generating massive amounts of data through laptops, mobile phones, sensors and other electronic devices or gadgets. Not surprisingly then, ninety percent of the world's digital data was created in the last two years. This massive explosion of data provides tremendous opportunity to study, model and improve conceptual and physical systems from which the data is produced. It also permits scientists to test pre-existing hypotheses in various fields with large scale experimental evidence. Thus, developing computational algorithms that automatically explores this data is the holy grail of the current generation of computer scientists. Making sense of this data algorithmically can be a complex process, specifically due to two reasons. Firstly, the data is generated by different devices, capturing different aspects of information and resides in different web resources/ platforms on the Internet. Therefore, even if two pieces of data bear singular conceptual similarity, their generation, format and domain of existence on the web can make them seem considerably dissimilar. Secondly, since humans are social creatures, the data often possesses inherent but murky correlations, primarily caused by the causal nature of direct or indirect social interactions. This drastically alters what algorithms must now achieve, necessitating intelligent comprehension of the underlying social nature and semantic contexts within the disparate domain data and a quantifiable way of transferring knowledge gained from one domain to another. Finally, the data is often encountered as a stream and not as static pages on the Internet. Therefore, we must learn, and re-learn as the stream propagates. The main objective of this dissertation is to develop learning algorithms that can identify specific patterns in one domain of data which can consequently augment predictive performance in another domain. The research explores existence of specific data domains which can function in synergy with another and more importantly, proposes models to quantify the synergetic information transfer among such domains. We include large-scale data from various domains in our study: social media data from Twitter, multimedia video data from YouTube, video search query data from Bing Videos, Natural Language search queries from the web, Internet resources in form of web logs (blogs) and spatio-temporal social trends from Twitter. Our work presents a series of solutions to address the key challenges in cross-domain learning, particularly in the field of social and semantic data. We propose the concept of bridging media from disparate sources by building a common latent topic space, which represents one of the first attempts toward answering sociological problems using cross-domain (social) media. This allows information transfer between social and non-social domains, fostering real-time socially relevant applications. We also engineer a concept network from the semantic web, called semNet, that can assist in identifying concept relations and modeling information granularity for robust natural language search. Further, by studying spatio-temporal patterns in this data, we can discover categorical concepts that stimulate collective attention within user groups.Includes bibliographical references (pages 210-214)

    Deep networks training and generalization: insights from linearization

    Full text link
    Bien qu'ils soient capables de représenter des fonctions très complexes, les réseaux de neurones profonds sont entraînés à l'aide de variations autour de la descente de gradient, un algorithme qui est basé sur une simple linéarisation de la fonction de coût à chaque itération lors de l'entrainement. Dans cette thèse, nous soutenons qu'une approche prometteuse pour élaborer une théorie générale qui expliquerait la généralisation des réseaux de neurones, est de s'inspirer d'une analogie avec les modèles linéaires, en étudiant le développement de Taylor au premier ordre qui relie des pas dans l'espace des paramètres à des modifications dans l'espace des fonctions. Cette thèse par article comprend 3 articles ainsi qu'une bibliothèque logicielle. La bibliothèque NNGeometry (chapitre 3) sert de fil rouge à l'ensemble des projets, et introduit une Interface de Programmation Applicative (API) simple pour étudier la dynamique d'entrainement linéarisée de réseaux de neurones, en exploitant des méthodes récentes ainsi que de nouvelles accélérations algorithmiques. Dans l'article EKFAC (chapitre 4), nous proposons une approchée de la Matrice d'Information de Fisher (FIM), utilisée dans l'algorithme d'optimisation du gradient naturel. Dans l'article Lazy vs Hasty (chapitre 5), nous comparons la fonction obtenue par dynamique d'entrainement linéarisée (par exemple dans le régime limite du noyau tangent (NTK) à largeur infinie), au régime d'entrainement réel, en utilisant des groupes d'exemples classés selon différentes notions de difficulté. Dans l'article NTK alignment (chapitre 6), nous révélons un effet de régularisation implicite qui découle de l'alignement du NTK au noyau cible, au fur et à mesure que l'entrainement progresse.Despite being able to represent very complex functions, deep artificial neural networks are trained using variants of the basic gradient descent algorithm, which relies on linearization of the loss at each iteration during training. In this thesis, we argue that a promising way to tackle the challenge of elaborating a comprehensive theory explaining generalization in deep networks, is to take advantage of an analogy with linear models, by studying the first order Taylor expansion that maps parameter space updates to function space progress. This thesis by publication is made of 3 papers and a software library. The library NNGeometry (chapter 3) serves as a common thread for all projects, and introduces a simple Application Programming Interface (API) to study the linearized training dynamics of deep networks using recent methods and contributed algorithmic accelerations. In the EKFAC paper (chapter 4), we propose an approximate to the Fisher Information Matrix (FIM), used in the natural gradient optimization algorithm. In the Lazy vs Hasty paper (chapter 5), we compare the function obtained while training using a linearized dynamics (e.g. in the infinite width Neural Tangent Kernel (NTK) limit regime), to the actual training regime, by means of examples grouped using different notions of difficulty. In the NTK alignment paper (chapter 6), we reveal an implicit regularization effect arising from the alignment of the NTK to the target kernel as training progresses
    • …
    corecore