54 research outputs found

    Reordering all agents in asynchronous backtracking for distributed constraint satisfaction problems

    Get PDF
    Distributed constraint satisfaction problems (DisCSPs) can express decision problems where physically distributed agents control different decision variables, but must coordinate with each other to agree on a global solution. Asynchronous Backtracking (ABT) is a pivotal search procedure for DisCSPs. ABT requires a static total ordering on the agents. However, reordering agents during search is an essential component for efficiently solving a DisCSP. All polynomial space algorithms proposed so far to improve ABT by reordering agents during search only allow a limited amount of reordering. In this paper, we propose AgileABT, a general framework for reordering agents asynchronously that is able to change the ordering of all agents. This is done via the original notion of termination value, a label attached to the orders exchanged by agents during search. We prove that AgileABT is sound and complete. We show that, thanks to termination values, our framework allows us to implement the main variable ordering heuristics from centralized CSPs, which until now could not be applied to the distributed setting. We prove that AgileABT terminates and has a polynomial space complexity in all these cases. Our empirical study shows the significance of our framework compared to state-of-the-art asynchronous dynamic ordering algorithms for solving distributed CSP

    Removing Redundant Conflict Value Assignments in Resolvent Based Nogood Learning

    Get PDF
    ABSTRACT Taking advantages of popular Resolvent-based (Rslv) and Minimum conflict set (MCS) nogood learning, we propose two new techniques: Unique nogood First Resolvent-based (UFRslv) and Redundant conflict value assignment Free Resolvent-based (RFRslv) nogood learning. By removing conflict value assignments that are redundant, these two new nogood learning techniques can obtain shorter and more efficient nogoods than Rslv nogood learning, and consume less computation effort to generate nogoods than MCS nogood learning. We implement the new techniques in two modern distributed constraint satisfaction algorithms, nogood based asynchronous forward checking (AFCng) and dynamic ordering for asynchronous backtracking with nogood-triggered heuristic (ABT-DOng). Comparing against Rslv and MCS on random distributed constraint satisfaction problems and distributed Langford's problems, UFRslv and RFRslv are favourable in number of messages and NCCCSOs (nonconcurrent constraint checks and set operations) as metrics

    Dynamic backtracking for general CSPs.

    Get PDF

    Towards flexible goal-oriented logic programming

    Get PDF

    Software Approaches to Manage Resource Tradeoffs of Power and Energy Constrained Applications

    Get PDF
    Power and energy efficiency have become an increasingly important design metric for a wide spectrum of computing devices. Battery efficiency, which requires a mixture of energy and power efficiency, is exceedingly important especially since there have been no groundbreaking advances in battery capacity recently. The need for energy and power efficiency stretches from small embedded devices to portable computers to large scale data centers. The projected future of computing demand, referred to as exascale computing, demands that researchers find ways to perform exaFLOPs of computation at a power bound much lower than would be required by simply scaling today's standards. There is a large body of work on power and energy efficiency for a wide range of applications and at different levels of abstraction. However, there is a lack of work studying the nuances of different tradeoffs that arise when operating under a power/energy budget. Moreover, there is no work on constructing a generalized model of applications running under power/energy constraints, which allows the designer to optimize their resource consumption, be it power, energy, time, bandwidth, or space. There is need for an efficient model that can provide bounds on the optimality of an application's resource consumption, becoming a basis against which online resource management heuristics can be measured. In this thesis, we tackle the problem of managing resource tradeoffs of power/energy constrained applications. We begin by studying the nuances of power/energy tradeoffs with the response time and throughput of stream processing applications. We then study the power performance tradeoff of batch processing applications to identify a power configuration that maximizes performance under a power bound. Next, we study the tradeoff of power/energy with network bandwidth and precision. Finally, we study how to combine tradeoffs into a generalized model of applications running under resource constraints. The work in this thesis presents detailed studies of the power/energy tradeoff with response time, throughput, performance, network bandwidth, and precision of stream and batch processing applications. To that end, we present an adaptive algorithm that manages stream processing tradeoffs of response time and throughput at the CPU level. At the task-level, we present an online heuristic that adaptively distributes bounded power in a cluster to improve performance, as well as an offline approach to optimally bound performance. We demonstrate how power can be used to reduce bandwidth bottlenecks and extend our offline approach to model bandwidth tradeoffs. Moreover, we present a tool that identifies parts of a program that can be downgraded in precision with minimal impact on accuracy, and maximal impact on energy consumption. Finally, we combine all the above tradeoffs into a flexible model that is efficient to solve and allows for bounding and/or optimizing the consumption of different resources

    WiFi-Based Human Activity Recognition Using Attention-Based BiLSTM

    Get PDF
    Recently, significant efforts have been made to explore human activity recognition (HAR) techniques that use information gathered by existing indoor wireless infrastructures through WiFi signals without demanding the monitored subject to carry a dedicated device. The key intuition is that different activities introduce different multi-paths in WiFi signals and generate different patterns in the time series of channel state information (CSI). In this paper, we propose and evaluate a full pipeline for a CSI-based human activity recognition framework for 12 activities in three different spatial environments using two deep learning models: ABiLSTM and CNN-ABiLSTM. Evaluation experiments have demonstrated that the proposed models outperform state-of-the-art models. Also, the experiments show that the proposed models can be applied to other environments with different configurations, albeit with some caveats. The proposed ABiLSTM model achieves an overall accuracy of 94.03%, 91.96%, and 92.59% across the 3 target environments. While the proposed CNN-ABiLSTM model reaches an accuracy of 98.54%, 94.25% and 95.09% across those same environments

    Proceedings of the 7th Sound and Music Computing Conference

    Get PDF
    Proceedings of the SMC2010 - 7th Sound and Music Computing Conference, July 21st - July 24th 2010
    corecore