7,857 research outputs found

    Structured Light-Based 3D Reconstruction System for Plants.

    Get PDF
    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance

    Point Cloud Structural Parts Extraction based on Segmentation Energy Minimization

    Get PDF
    In this work we consider 3D point sets, which in a typical setting represent unorganized point clouds. Segmentation of these point sets requires first to single out structural components of the unknown surface discretely approximated by the point cloud. Structural components, in turn, are surface patches approximating unknown parts of elementary geometric structures, such as planes, ellipsoids, spheres and so on. The approach used is based on level set methods computing the moving front of the surface and tracing the interfaces between different parts of it. Level set methods are widely recognized to be one of the most efficient methods to segment both 2D images and 3D medical images. Level set methods for 3D segmentation have recently received an increasing interest. We contribute by proposing a novel approach for raw point sets. Based on the motion and distance functions of the level set we introduce four energy minimization models, which are used for segmentation, by considering an equal number of distance functions specified by geometric features. Finally we evaluate the proposed algorithm on point sets simulating unorganized point clouds

    3D Point Capsule Networks

    Get PDF
    In this paper, we propose 3D point-capsule networks, an auto-encoder designed to process sparse 3D point clouds while preserving spatial arrangements of the input data. 3D capsule networks arise as a direct consequence of our novel unified 3D auto-encoder formulation. Their dynamic routing scheme and the peculiar 2D latent space deployed by our approach bring in improvements for several common point cloud-related tasks, such as object classification, object reconstruction and part segmentation as substantiated by our extensive evaluations. Moreover, it enables new applications such as part interpolation and replacement.Comment: As published in CVPR 2019 (camera ready version), with supplementary materia

    3D Point Capsule Networks

    Get PDF
    In this paper, we propose 3D point-capsule networks, an auto-encoder designed to process sparse 3D point clouds while preserving spatial arrangements of the input data. 3D capsule networks arise as a direct consequence of our novel unified 3D auto-encoder formulation. Their dynamic routing scheme and the peculiar 2D latent space deployed by our approach bring in improvements for several common point cloud-related tasks, such as object classification, object reconstruction and part segmentation as substantiated by our extensive evaluations. Moreover, it enables new applications such as part interpolation and replacement
    • …
    corecore