4,396 research outputs found

    An exact algorithm for linear optimization problem subject to max-product fuzzy relational inequalities with fuzzy constraints

    Full text link
    Fuzzy relational inequalities with fuzzy constraints (FRI-FC) are the generalized form of fuzzy relational inequalities (FRI) in which fuzzy inequality replaces ordinary inequality in the constraints. Fuzzy constraints enable us to attain optimal points (called super-optima) that are better solutions than those resulted from the resolution of the similar problems with ordinary inequality constraints. This paper considers the linear objective function optimization with respect to max-product FRI-FC problems. It is proved that there is a set of optimization problems equivalent to the primal problem. Based on the algebraic structure of the primal problem and its equivalent forms, some simplification operations are presented to convert the main problem into a more simplified one. Finally, by some appropriate mathematical manipulations, the main problem is transformed into an optimization model whose constraints are linear. The proposed linearization method not only provides a super-optimum (that is better solution than ordinary feasible optimal solutions) but also finds the best super-optimum for the main problem. The current approach is compared with our previous work and some well-known heuristic algorithms by applying them to random test problems in different sizes.Comment: 29 pages, 8 figures, 7 table

    A constrained tropical optimization problem: complete solution and application example

    Full text link
    The paper focuses on a multidimensional optimization problem, which is formulated in terms of tropical mathematics and consists in minimizing a nonlinear objective function subject to linear inequality constraints. To solve the problem, we follow an approach based on the introduction of an additional unknown variable to reduce the problem to solving linear inequalities, where the variable plays the role of a parameter. A necessary and sufficient condition for the inequalities to hold is used to evaluate the parameter, whereas the general solution of the inequalities is taken as a solution of the original problem. Under fairly general assumptions, a complete direct solution to the problem is obtained in a compact vector form. The result is applied to solve a problem in project scheduling when an optimal schedule is given by minimizing the flow time of activities in a project under various activity precedence constraints. As an illustration, a numerical example of optimal scheduling is also presented.Comment: 20 pages, accepted for publication in Contemporary Mathematic

    Complete solution of a constrained tropical optimization problem with application to location analysis

    Full text link
    We present a multidimensional optimization problem that is formulated and solved in the tropical mathematics setting. The problem consists of minimizing a nonlinear objective function defined on vectors over an idempotent semifield by means of a conjugate transposition operator, subject to constraints in the form of linear vector inequalities. A complete direct solution to the problem under fairly general assumptions is given in a compact vector form suitable for both further analysis and practical implementation. We apply the result to solve a multidimensional minimax single facility location problem with Chebyshev distance and with inequality constraints imposed on the feasible location area.Comment: 20 pages, 3 figure

    Fuzzy Maximum Satisfiability

    Full text link
    In this paper, we extend the Maximum Satisfiability (MaxSAT) problem to {\L}ukasiewicz logic. The MaxSAT problem for a set of formulae {\Phi} is the problem of finding an assignment to the variables in {\Phi} that satisfies the maximum number of formulae. Three possible solutions (encodings) are proposed to the new problem: (1) Disjunctive Linear Relations (DLRs), (2) Mixed Integer Linear Programming (MILP) and (3) Weighted Constraint Satisfaction Problem (WCSP). Like its Boolean counterpart, the extended fuzzy MaxSAT will have numerous applications in optimization problems that involve vagueness.Comment: 10 page

    Fuzzy Linear Programming in DSS for Energy System Planning

    Get PDF
    Energy system planning requires the use of planning tools. The mathematical models of real-world energy systems are usually multiperiod linear optimization programs. In these models, the objective function describes the total discounted costs of covering the demand for final energy or energy services. The demand for various forms of energy or energy services is the driving force of the models. By using such linear programming (LP) formulations, decision makers can elaborate suitable strategies for solving their planning problems, such as the development of emission reduction strategies. Uncertainties that affect the process of energy system planning can be divided into parameter and decision uncertainties. Data or parameter uncertainties can be addressed either by stochastic optimization or by the methodology of fuzzy linear programming (FLP). In addition, FLP allows explicit incorporation of decision uncertainties into a mathematical model. This paper therefore aims at evaluating the methodology of FLP with respect to the support that it offers the decision-making process in energy system planning under uncertainty. Employing the parallels between multi-objective linear programming (MOLP) and FLP, problems of FLP in decision support system applications are pointed out and solutions are offered. The proposed modifications are based on the methodology of aspiration-reservation based decision support and still enable modeling of uncertainties in a fuzzy sense. A case study is documented to show the application of the modified FLP approach
    corecore