105 research outputs found

    Robust Correlation Clustering

    Get PDF
    In this paper, we introduce and study the Robust-Correlation-Clustering problem: given a graph G = (V,E) where every edge is either labeled + or - (denoting similar or dissimilar pairs of vertices), and a parameter m, the goal is to delete a set D of m vertices, and partition the remaining vertices V D into clusters to minimize the cost of the clustering, which is the sum of the number of + edges with end-points in different clusters and the number of - edges with end-points in the same cluster. This generalizes the classical Correlation-Clustering problem which is the special case when m = 0. Correlation clustering is useful when we have (only) qualitative information about the similarity or dissimilarity of pairs of points, and Robust-Correlation-Clustering equips this model with the capability to handle noise in datasets. In this work, we present a constant-factor bi-criteria algorithm for Robust-Correlation-Clustering on complete graphs (where our solution is O(1)-approximate w.r.t the cost while however discarding O(1) m points as outliers), and also complement this by showing that no finite approximation is possible if we do not violate the outlier budget. Our algorithm is very simple in that it first does a simple LP-based pre-processing to delete O(m) vertices, and subsequently runs a particular Correlation-Clustering algorithm ACNAlg [Ailon et al., 2005] on the residual instance. We then consider general graphs, and show (O(log n), O(log^2 n)) bi-criteria algorithms while also showing a hardness of alpha_MC on both the cost and the outlier violation, where alpha_MC is the lower bound for the Minimum-Multicut problem

    Efficient Decomposition of Image and Mesh Graphs by Lifted Multicuts

    Full text link
    Formulations of the Image Decomposition Problem as a Multicut Problem (MP) w.r.t. a superpixel graph have received considerable attention. In contrast, instances of the MP w.r.t. a pixel grid graph have received little attention, firstly, because the MP is NP-hard and instances w.r.t. a pixel grid graph are hard to solve in practice, and, secondly, due to the lack of long-range terms in the objective function of the MP. We propose a generalization of the MP with long-range terms (LMP). We design and implement two efficient algorithms (primal feasible heuristics) for the MP and LMP which allow us to study instances of both problems w.r.t. the pixel grid graphs of the images in the BSDS-500 benchmark. The decompositions we obtain do not differ significantly from the state of the art, suggesting that the LMP is a competitive formulation of the Image Decomposition Problem. To demonstrate the generality of the LMP, we apply it also to the Mesh Decomposition Problem posed by the Princeton benchmark, obtaining state-of-the-art decompositions

    Bilu-Linial Stable Instances of Max Cut and Minimum Multiway Cut

    Full text link
    We investigate the notion of stability proposed by Bilu and Linial. We obtain an exact polynomial-time algorithm for γ\gamma-stable Max Cut instances with γclognloglogn\gamma \geq c\sqrt{\log n}\log\log n for some absolute constant c>0c > 0. Our algorithm is robust: it never returns an incorrect answer; if the instance is γ\gamma-stable, it finds the maximum cut, otherwise, it either finds the maximum cut or certifies that the instance is not γ\gamma-stable. We prove that there is no robust polynomial-time algorithm for γ\gamma-stable instances of Max Cut when γ<αSC(n/2)\gamma < \alpha_{SC}(n/2), where αSC\alpha_{SC} is the best approximation factor for Sparsest Cut with non-uniform demands. Our algorithm is based on semidefinite programming. We show that the standard SDP relaxation for Max Cut (with 22\ell_2^2 triangle inequalities) is integral if γD221(n)\gamma \geq D_{\ell_2^2\to \ell_1}(n), where D221(n)D_{\ell_2^2\to \ell_1}(n) is the least distortion with which every nn point metric space of negative type embeds into 1\ell_1. On the negative side, we show that the SDP relaxation is not integral when γ<D221(n/2)\gamma < D_{\ell_2^2\to \ell_1}(n/2). Moreover, there is no tractable convex relaxation for γ\gamma-stable instances of Max Cut when γ<αSC(n/2)\gamma < \alpha_{SC}(n/2). That suggests that solving γ\gamma-stable instances with γ=o(logn)\gamma =o(\sqrt{\log n}) might be difficult or impossible. Our results significantly improve previously known results. The best previously known algorithm for γ\gamma-stable instances of Max Cut required that γcn\gamma \geq c\sqrt{n} (for some c>0c > 0) [Bilu, Daniely, Linial, and Saks]. No hardness results were known for the problem. Additionally, we present an algorithm for 4-stable instances of Minimum Multiway Cut. We also study a relaxed notion of weak stability.Comment: 24 page

    A dual ascent framework for Lagrangean decomposition of combinatorial problems

    Get PDF
    We propose a general dual ascent framework for Lagrangean decomposition of combinatorial problems. Although methods of this type have shown their efficiency for a number of problems, so far there was no general algorithm applicable to multiple problem types. In this work, we propose such a general algorithm. It depends on several parameters, which can be used to optimize its performance in each particular setting. We demonstrate efficacy of our method on graph matching and multicut problems, where it outperforms state-of-the-art solvers including those based on subgradient optimization and off-the-shelf linear programming solvers
    corecore