14,471 research outputs found

    Markov Network Structure Learning via Ensemble-of-Forests Models

    Full text link
    Real world systems typically feature a variety of different dependency types and topologies that complicate model selection for probabilistic graphical models. We introduce the ensemble-of-forests model, a generalization of the ensemble-of-trees model. Our model enables structure learning of Markov random fields (MRF) with multiple connected components and arbitrary potentials. We present two approximate inference techniques for this model and demonstrate their performance on synthetic data. Our results suggest that the ensemble-of-forests approach can accurately recover sparse, possibly disconnected MRF topologies, even in presence of non-Gaussian dependencies and/or low sample size. We applied the ensemble-of-forests model to learn the structure of perturbed signaling networks of immune cells and found that these frequently exhibit non-Gaussian dependencies with disconnected MRF topologies. In summary, we expect that the ensemble-of-forests model will enable MRF structure learning in other high dimensional real world settings that are governed by non-trivial dependencies.Comment: 13 pages, 6 figure

    Stability of graph communities across time scales

    Get PDF
    The complexity of biological, social and engineering networks makes it desirable to find natural partitions into communities that can act as simplified descriptions and provide insight into the structure and function of the overall system. Although community detection methods abound, there is a lack of consensus on how to quantify and rank the quality of partitions. We show here that the quality of a partition can be measured in terms of its stability, defined in terms of the clustered autocovariance of a Markov process taking place on the graph. Because the stability has an intrinsic dependence on time scales of the graph, it allows us to compare and rank partitions at each time and also to establish the time spans over which partitions are optimal. Hence the Markov time acts effectively as an intrinsic resolution parameter that establishes a hierarchy of increasingly coarser clusterings. Within our framework we can then provide a unifying view of several standard partitioning measures: modularity and normalized cut size can be interpreted as one-step time measures, whereas Fiedler's spectral clustering emerges at long times. We apply our method to characterize the relevance and persistence of partitions over time for constructive and real networks, including hierarchical graphs and social networks. We also obtain reduced descriptions for atomic level protein structures over different time scales.Comment: submitted; updated bibliography from v
    corecore