83 research outputs found

    Hybrid Stochastic Systems: Numerical Methods, Limit Results, And Controls

    Get PDF
    This dissertation is concerned with the so-called stochastic hybrid systems, which are featured by the coexistence of continuous dynamics and discrete events and their interactions. Such systems have drawn much needed attentions in recent years. One of the main reasons is that such systems can be used to better reflect the reality for a wide range of applications in networked systems, communication systems, economic systems, cyber-physical systems, and biological and ecological systems, among others. Our main interest is centered around one class of such hybrid systems known as switching diffusions. In such a system, in addition to the driving force of a Brownian motion as in a stochastic system represented by a stochastic differential equation (SDE), there is an additional continuous-time switching process that models the environmental changes due to random events. In the first part, we develops numerical schemes for stochastic differential equations with Markovian switching (Markovian switching SDEs). By utilizing a special form of It^o\u27s formula for switching SDEs and special structural of the jumps of the switching component we derived a new scheme to simulate switching SDEs in the spirit of Milstein\u27s scheme for purely SDEs. We also develop a new approach to establish the convergence of the proposed algorithm that incorporates martingale methods, quadratic variations, and Markovian stopping times. Detailed and delicate analysis is carried out. Under suitable conditions which are natural extensions of the classical ones, the convergence of the algorithms is established. The rate of convergence is also ascertained. The second part is concerned with a limit theorem for general stochastic differential equations with Markovian regime switching. Given a sequence of stochastic regime switching systems where the discrete switching processes are independent of the state of the systems. The continuous-state component of these systems are governed by stochastic differential equations with driving processes that are continuous increasing processes and square integrable martingales. We establish the convergence of the sequence of systems to the one described by a state independent regime-switching diffusion process when the two driving processes converge to the usual time process and the Brownian motion in suitable sense. The third part is concerned with controlled hybrid systems that are good approximations to controlled switching diffusion processes. In lieu of a Brownian motion noise, we use a wide-band noise formulation, which facilitates the treatment of non-Markovian models. The wide-band noise is one whose spectrum has band width wide enough. We work with a basic stationary mixing type process. On top of this wide-band noise process, we allow the system to be subject to random discrete event influence. The discrete event process is a continuous time Markov chain with a finite state space. Although the state space is finite, we assume that the state space is rather large and the Markov chain is irreducible. Using a two-time-scale formulation and assuming the Markov chain also subjects to fast variations, using weak convergence and singular perturbation test function method we first proved that the when controlled by nearly optimal and equilibrium controls, the state and the corresponding costs of the original systems would converge to those of controlled diffusions systems. Using the limit controlled dynamic system as a guidance, we construct controls for the original problem and show that the controls so constructed are near optimal and nearly equilibrium

    Approximation methods for hybrid diffusion systems with state-dependent switching processes : numerical algorithms and existence and uniqueness of solutions

    Get PDF
    By focusing on hybrid diffusions in which continuous dynamics and discrete events coexist, this work is concerned with approximation of solutions for hybrid stochastic differential equations with a state-dependent switching process. Iterative algorithms are developed. The continuous-state dependent switching process presents added difficulties in analyzing the numerical procedures. Weak convergence of the algorithms is established by a martingale problem formulation first. This weak convergence result is then used as a bridge to obtain strong convergence. In this process, the existence and uniqueness of the solution of the switching diffusions with continuous-state-dependent switching are obtained. Different from the existing results of solutions of stochastic differential equations in which the Picard iterations are utilized, Euler's numerical schemes are considered here. Moreover, decreasing stepsize algorithms together with their weak convergence are given. Numerical experiments are also provided for demonstration

    On It\^o-Taylor expansion for stochastic differential equations with Markovian switching and its application in Ī³āˆˆ{n/2:nāˆˆN}\gamma\in\{n/2:n \in\mathbb{N}\}-order scheme

    Full text link
    The coefficients of the stochastic differential equations with Markovian switching (SDEwMS) additionally depend on a Markov chain and there is no notion of differentiating such functions with respect to the Markov chain. In particular, this implies that the It\^o-Taylor expansion for SDEwMS is not a straightforward extension of the It\^o-Taylor expansion for stochastic differential equations (SDEs). Further, higher-order numerical schemes for SDEwMS are not available in the literature, perhaps because of the absence of the It\^o-Taylor expansion. In this article, first, we overcome these challenges and derive the It\^o-Taylor expansion for SDEwMS, under some suitable regularity assumptions on the coefficients, by developing new techniques. Secondly, we demonstrate an application of our first result on the It\^o-Taylor expansion in the numerical approximations of SDEwMS. We derive an explicit scheme for SDEwMS using the It\^o-Taylor expansion and show that the strong rate of convergence of our scheme is equal to Ī³āˆˆ{n/2:nāˆˆN}\gamma\in\{n/2:n\in\mathbb{N}\} under some suitable Lipschitz-type conditions on the coefficients and their derivatives. It is worth mentioning that designing and analysis of the It\^o-Taylor expansion and the Ī³āˆˆ{n/2:nāˆˆN}\gamma\in\{n/2:n\in\mathbb{N}\}-order scheme for SDEwMS become much more complex and involved due to the entangling of continuous dynamics and discrete events. Finally, our results coincide with the corresponding results on SDEs when the state of the Markov chain is a singleton set.Comment: 5

    Rational Construction of Stochastic Numerical Methods for Molecular Sampling

    Get PDF
    In this article, we focus on the sampling of the configurational Gibbs-Boltzmann distribution, that is, the calculation of averages of functions of the position coordinates of a molecular NN-body system modelled at constant temperature. We show how a formal series expansion of the invariant measure of a Langevin dynamics numerical method can be obtained in a straightforward way using the Baker-Campbell-Hausdorff lemma. We then compare Langevin dynamics integrators in terms of their invariant distributions and demonstrate a superconvergence property (4th order accuracy where only 2nd order would be expected) of one method in the high friction limit; this method, moreover, can be reduced to a simple modification of the Euler-Maruyama method for Brownian dynamics involving a non-Markovian (coloured noise) random process. In the Brownian dynamics case, 2nd order accuracy of the invariant density is achieved. All methods considered are efficient for molecular applications (requiring one force evaluation per timestep) and of a simple form. In fully resolved (long run) molecular dynamics simulations, for our favoured method, we observe up to two orders of magnitude improvement in configurational sampling accuracy for given stepsize with no evident reduction in the size of the largest usable timestep compared to common alternative methods

    Dynamical Behavior of a Stochastic Delayed One-Predator and Two-Mutualistic-Prey Model with Markovian Switching and Different Functional Responses

    Get PDF
    We propose a stochastic delayed one-predator and two-mutualistic-prey model perturbed by white noise and telegraph noise. By the M-matrix analysis and Lyapunov functions, sufficient conditions of stochastic permanence and extinction are established, respectively. These conditions are all dependent on the subsystemsā€™ parameters and the stationary probability distribution of the Markov chain. We also investigate another asymptotic property and finally give two examples and numerical simulations to illustrate main results

    Effective simulation techniques for biological systems

    Get PDF
    In this paper we give an overview of some very recent work on the stochastic simulation of systems involving chemical reactions. In many biological systems (such as genetic regulation and cellular dynamics) there is a mix between small numbers of key regulatory proteins, and medium and large numbers of molecules. In addition, it is important to be able to follow the trajectories of individual molecules by taking proper account of the randomness inherent in such a system. We describe different types of simulation techniques (including the stochastic simulation algorithm, Poisson Runge-Kutta methods and the Balanced Euler method) for treating simulations in the three different reaction regimes: slow, medium and fast. We then review some recent techniques on the treatment of coupled slow and fast reactions for stochastic chemical kinetics and discuss how novel computing implementations can enhance the performance of these simulations

    A Fully Quantization-based Scheme for FBSDEs

    Get PDF
    We propose a quantization-based numerical scheme for a family of decoupled FBSDEs. We simplify the scheme for the control in Pag\ue8s and Sagna (2018) so that our approach is fully based on recursive marginal quantization and does not involve any Monte Carlo simulation for the computation of conditional expectations. We analyse in detail the numerical error of our scheme and we show through some examples the performance of the whole procedure, which proves to be very effective in view of financial applications

    Computational methods for various stochastic differential equation models in finance

    Get PDF
    This study develops efficient numerical methods for solving jumpdiffusion stochastic delay differential equations and stochastic differential equations with fractional order. In addition, two novel algorithms are developed for the estimation of parameters in the stochastic models. One of the algorithms is based on the implementation of the Bayesian inference and the Markov Chain Monte Carlo method, while the other one is developed by using an implicit numerical scheme integrated with the particle swarm optimization
    • ā€¦
    corecore