105 research outputs found

    Millimeter-wave soldier-to-soldier communications for covert battlefield operations

    Get PDF

    An Interactive Graphical User Interface Module for Soldier Health and Position Tracking System

    Get PDF
    Soldiers are the backbone of any armed force. They usually lose their lives due to the lack of medical assistance in emergency situations. Furthermore, army bases face problems due to the inability to track soldiers’ locations in the field. Hence, this paper proposes an interactive graphical user interface module (IGUIM) for soldiers’ bioinformatics acquisition and emergency reaction during combat, a global positioning system (GPS) is used to track soldiers’ locations through a device carried by the soldier. Soldiers’ bioinformatics are gathered using health monitoring biosensors, bidirectional communication between the soldiers and the army base is established via a global system for mobile (GSM). The proposed interactive module aims to enumerate the soldiers on the battlefield within a database that easily facilitates health monitoring, position tracking and bidirectional communication with each soldier through their identification number. The proposed IGUIM will increase the rate of soldiers’ survival in emergencies, which contributes to preserving the human resources of the army during combat

    Polygonal Dipole Placements for Efficient, Rotatable, Single Beam Smart Antennas in 5G Aerospace and Ground Wireless Systems

    Get PDF
    In telecommunication systems and radars, the common practice in using array antennas is to place a reflector behind the array so as to reflect the backward signal also in the forward direction. Moreover, in the 5G wireless systems, smart antennas, especially those with a single beam, are expected to play a critical role in its successful launching in 2020. We show in this paper that a linear array antenna necessarily ends up with symmetrical beamforming on both sides of the array axis. Thus, single direction (forward direction) beamforming cannot be achieved by placing the electromagnetic radiators (e.g. dipole elements) in a straight line. We propose that in situations where a smart array structure demands single rotatable beams, that single rotatable beamforming can be achieved by changing the geometrical shape of the array. However, the computational intensity involved in finding optimized weight coefficients for beamforming over the entire 360o space turns into the major challenge. In order to minimize the computational repetition of optimizing weights for every direction, a regular polygon array antenna is proposed. We show that an array antenna placed in a regular polygon yields a smart antenna with a highly effective and computationally fast, reduced memory and electronically rotatable single beam

    Millimetre wave frequency band as a candidate spectrum for 5G network architecture : a survey

    Get PDF
    In order to meet the huge growth in global mobile data traffic in 2020 and beyond, the development of the 5th Generation (5G) system is required as the current 4G system is expected to fall short of the provision needed for such growth. 5G is anticipated to use a higher carrier frequency in the millimetre wave (mm-wave) band, within the 20 to 90 GHz, due to the availability of a vast amount of unexploited bandwidth. It is a revolutionary step to use these bands because of their different propagation characteristics, severe atmospheric attenuation, and hardware constraints. In this paper, we carry out a survey of 5G research contributions and proposed design architectures based on mm-wave communications. We present and discuss the use of mm-wave as indoor and outdoor mobile access, as a wireless backhaul solution, and as a key enabler for higher order sectorisation. Wireless standards such as IEE802.11ad, which are operating in mm-wave band have been presented. These standards have been designed for short range, ultra high data throughput systems in the 60 GHz band. Furthermore, this survey provides new insights regarding relevant and open issues in adopting mm-wave for 5G networks. This includes increased handoff rate and interference in Ultra-Dense Network (UDN), waveform consideration with higher spectral efficiency, and supporting spatial multiplexing in mm-wave line of sight. This survey also introduces a distributed base station architecture in mm-wave as an approach to address increased handoff rate in UDN, and to provide an alternative way for network densification in a time and cost effective manner

    Strategic Latency Unleashed: The Role of Technology in a Revisionist Global Order and the Implications for Special Operations Forces

    Get PDF
    The article of record may be found at https://cgsr.llnl.govThis work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. The views and opinions of the author expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC. ISBN-978-1-952565-07-6 LCCN-2021901137 LLNL-BOOK-818513 TID-59693This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. The views and opinions of the author expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC. ISBN-978-1-952565-07-6 LCCN-2021901137 LLNL-BOOK-818513 TID-5969
    • …
    corecore