62 research outputs found

    Silicon-Based Terahertz Circuits and Systems

    Get PDF
    The Terahertz frequency range, often referred to as the `Terahertz' gap, lies wedged between microwave at the lower end and infrared at the higher end of the spectrum, occupying frequencies between 0.3-3.0 THz. For a long time, applications in THz frequencies had been limited to astronomy and chemical sciences, but with advancement in THz technology in recent years, it has shown great promise in a wide range of applications ranging from disease diagnostics, non-invasive early skin cancer detection, label-free DNA sequencing to security screening for concealed weapons and contraband detection, global environmental monitoring, nondestructive quality control and ultra-fast wireless communication. Up until recently, the terahertz frequency range has been mostly addressed by high mobility compound III-V processes, expensive nonlinear optics, or cryogenically cooled quantum cascade lasers. A low cost, room temperature alternative can enable the development of such a wide array of applications, not currently accessible due to cost and size limitations. In this thesis, we will discuss our approach towards development of integrated terahertz technology in silicon-based processes. In the spirit of academic research, we will address frequencies close to 0.3 THz as 'Terahertz'. In this thesis, we address both fronts of integrated THz systems in silicon: THz power generation, radiation and transmitter systems, and THz signal detection and receiver systems. THz power generation in silicon-based integrated circuit technology is challenging due to lower carrier mobility, lower cut-o frequencies compared to compound III-V processes, lower breakdown voltages and lossy passives. Radiation from silicon chip is also challenging due to lossy substrates and high dielectric constant of silicon. In this work, we propose novel ways of combining circuit and electromagnetic techniques in a holistic design approach, which can overcome limitations of conventional block-by-block or partitioned design methodology, in order to generate high-frequency signals above the classical definition of cut-off frequencies (ƒt/ƒmax). We demonstrate this design philosophy in an active electromagnetic structure, which we call Distributed Active Radiator. It is inspired by an Inverse Maxwellian approach, where instead of using classical circuit and electromagnetic blocks to generate and radiate THz frequencies, we formulate surface (metal) currents in silicon chip for a desired THz field prole and develop active means of controlling different harmonic currents to perform signal generation, frequency multiplication, radiation and lossless filtering, simultaneously in a compact footprint. By removing the articial boundaries between circuits, electromagnetics and antenna, we open ourselves to a broader design space. This enabled us to demonstrate the rst 1 mW Eective-isotropic-radiated-power(EIRP) THz (0.29 THz) source in CMOS with total radiated power being three orders of magnitude more than previously demonstrated. We also proposed a near-field synchronization mechanism, which is a scalable method of realizing large arrays of synchronized autonomous radiating sources in silicon. We also demonstrate the first THz CMOS array with digitally controlled beam-scanning in 2D space with radiated output EIRP of nearly 10 mW at 0.28 THz. On the receiver side, we use a similar electronics and electromagnetics co-design approach to realize a 4x4 pixel integrated silicon Terahertz camera demonstrating to the best of our knowledge, the most sensitive silicon THz detector array without using post-processing, silicon lens or high-resistivity substrate options (NEP &lt; 10 pW &#8730; Hz at 0.26 THz). We put the 16 pixel silicon THz camera together with the CMOS DAR THz power generation arrays and demonstrated, for the first time, an all silicon THz imaging system with a CMOS source.</p

    Analysis and Design of a Sub-THz Ultra-Wideband Phased-Array Transmitter

    Get PDF
    This thesis investigates circuits and systems for broadband high datarate transmitter systems in the millimeter-wave (mm-wave) spectrum. During the course of this dissertation, the design process and characterization of a power efficient and wideband binary phase-shift keying (BPSK) transmitter integrated circuit (IC) with local oscillator (LO) frequency multiplication and 360° phase control for beam steering is studied. All required circuit blocks are designed based on the theoretical analysis of the underlying principles, optimized, fabricated and characterized in the research laboratory targeting low power consumption, high efficiency and broadband operation. The phase-controlled push-push (PCPP) architecture enabling frequency multiplication by four in a single stage is analytically studied and characterized finding an optimum between output power and second harmonic suppression depending on the input amplitude. A PCPP based LO chain is designed. A circuit is fabricated establishing the feasibility of this architecture for operation at more than 200 GHz. Building on this, a second circuit is designed, which produces among the highest saturated output powers at 2 dBm. At less than 100 mW of direct current (DC) power consumption, this results in a power-added efficiency (PAE) of 1.6 % improving the state of the art by almost 30 %. Phase-delayed and time-delayed approaches to beam steering are analyzed, identifying and discussing design challenges like area consumption, signal attenuation and beam squint. A 60 GHz active vector-sum phase-shifter with high gain of 11.3 dB and output power of 5 dBm, improving the PAE of the state of the art by a factor of 30 achieving 6.29 %, is designed. The high gain is possible due to an optimization of the orthogonal signal creation stage enabled by studying and comparing different architectures leading to a trade off of lower signal attenuation for higher area consumption in the chosen electromagnetic coupler. By combining this with a frequency quadrupler, a phase steering enabled LO chain for operation at 220 GHz is created and characterized, confirming the preceding analysis of the phase-frequency relation during multiplication. It achieves a power gain of 21 dB, outperforming comparable designs by 25 dB. This allows the combination of phase control, frequency multiplication and pre-amplification. The radio frequency (RF) efficiency is increased 40-fold to 0.99 %, with a total power consumption of 105 mW. Motivated by the distorting effect of beam squint in phase-delayed broadband array systems, a novel analog hybrid beam steering architecture is devised, combining phase-delayed and time-delayed steering with the goal of reducing the beam squint of phase-delayed systems and large area consumption of time-delayed circuits. An analytical design procedure is presented leading to the research finding of a beam squint reduction potential of more than 83 % in an ideal system. Here, the increase in area consumption is outweighed by the reduction in beam squint. An IC with a low power consumption of 4.3 mW has been fabricated and characterized featuring the first time delay circuit operating at above 200 GHz. By producing most of the beam direction by means of time delay the beam squinting can be reduced by more than 75 % in measurements while the subsequent phase shifter ensures continuous beam direction control. Together, the required silicon area can be reduced to 43 % compared to timedelayed systems in the same frequency range. Based on studies of the optimum signal feeding and input matching of a Gilbert cell, an ultra-wideband, low-power mixer was designed. A bandwidth of more than 100 GHz was achieved exceeding the state of the art by 23 %. With a conversion gain of –13 dB, this enables datarates of more than 100 Gbps in BPSK operation. The findings are consolidated in an integrated transmitter operating around 246 GHz doubling the highest published measured datarates of transmitters with LO chain and power amplifier in BPSK operation to 56 Gbps. The resulting transmitter efficiency of 7.4 pJ/bit improves the state of the art by 70 % and 50 % over BPSK and quadrature phaseshift keying (QPSK) systems, respectively. Together, the results of this work form the basis for low-power and efficient next-generation wireless applications operating at many times the datarates available today.:Abstract 3 Zusammenfassung 5 List of Symbols 11 List of Acronyms 17 Prior Publications 19 1. Introduction 21 1.1. Motivation........................... 21 1.2. Objective of this Thesis ................... 25 1.3. Structure of this Thesis ................... 27 2. Overview of Employed Technologies and Techniques 29 2.1. IntegratedCircuitTechnology................ 29 2.2. Transmission Lines and Passive Structures . . . . . . . . 35 2.3. DigitalModulation ...................... 41 3. Frequency Quadrupler 45 3.1. Theoretical Analysis of Frequency Multiplication Circuits 45 3.2. Phase-Controlled Push-Push Principle for Frequency Quadrupling.......................... 49 3.3. Stand-alone Phase-Controlled Push-Push Quadrupler . 60 3.4. Phase-Controlled Push-Push Quadrupler based LO-chain with High Output Power ............... 72 9 4. Array Systems and Dynamic Beam Steering 91 4.1. Theoretical Analysis of BeamSteering. . . . . . . . . . . 95 4.2. Local Oscillator Phase Shifting with Vector-Modulator PhaseShifters......................... 107 4.3. Hybrid True-Time and Phase-Delayed Beam Steering . 131 5. Ultra-Wide Band Modulator for BPSK Operation 155 6. Broadband BPSK Transmitter System for Datarates up to 56 Gbps 167 6.1. System Architecture ..................... 168 6.2. Measurement Technique and Results . . . . . . . . . . . 171 6.3. Summary and performance comparison . . . . . . . . . 185 7. Conclusion and Outlook 189 A. Appendix 195 Bibliography 199 List of Figures 227 Note of Thanks 239 Curriculum Vitae 241Diese Dissertation untersucht Schaltungen und Systeme für breitbandige Transmittersysteme mit hoher Datenrate im Millimeterwellen (mm-wave) Spektrum. Im Rahmen dieser Arbeit werden der Entwurfsprozess und die Charakterisierung eines leistungseffizienten und breitbandigen integrierten Senders basierend auf binärer Phasenumtastung (BPSK) mit Frequenzvervielfachung des Lokaloszillatorsignals und 360°-Phasenkontrolle zur Strahlsteuerung untersucht. Alle erforderlichen Schaltungsblöcke werden auf Grundlage von theoretischen Analysen der zugrundeliegenden Prinzipien entworfen, optimiert, hergestellt und im Forschungslabor charakterisiert, mit den Zielen einer niedrigen Leistungsaufnahme, eines hohen Wirkungsgrades und einer möglichst großen Bandbreite. Die phasengesteuerte Push-Push (PCPP)-Architektur, welche eine Frequenzvervierfachung in einer einzigen Stufe ermöglicht, wird analytisch untersucht und charakterisiert. Dabei wird ein Optimum zwischen Ausgangsleistung und Unterdrückung der zweiten Harmonischen des Eingangssignals in Abhängigkeit von der Eingangsamplitude gefunden. Es wird eine LO-Kette auf PCPP-Basis entworfen. Eine Schaltung wird präsentiert, die die Machbarkeit dieser Architektur für den Betrieb bei mehr als 200 GHz nachweist. Darauf aufbauend wird eine zweite Schaltung entworfen, die mit 2 dBm eine der höchsten publizierten gesättigten Ausgangsleistungen erzeugt. Mit einer Leistungsaufnahme von weniger als 100mW ergibt sich ein Leistungswirkungsgrad (PAE) von 1.6 %, was den Stand der Technik um fast 30 % verbessert. Es werden phasenverzögerte und zeitverzögerte Ansätze zur Steuerung der Strahlrichtung analysiert, wobei Entwicklungsherausforderungen wie Flächenverbrauch, Signaldämpfung und Strahlschielen identifiziert und diskutiert werden. Ein aktiver Vektorsummen-Phasenschieber mit hoher Verstärkung von 11.3 dB und einer Ausgangsleistung von 5 dBm, der mit einer PAE von 6.29 % den Stand der Technik um den Faktor 30 verbessert, wird entworfen. Die hohe Verstärkung ist zum Teil auf eine Optimierung der orthogonalen Signalerzeugungsstufe zurückzuführen, die durch die Untersuchung und den Vergleich verschiedener Architekturen ermöglicht wird. Bei der Entscheidung für einen elektromagnetischen Koppler rechtfertigt die geringere Signaldämpfung einen höheren Flächenverbrauch. Durch die Kombination mit einem Frequenzvervierfacher wird eine LO-Kette mit Phasensteuerung für den Betrieb bei 220 GHz geschaffen und charakterisiert, was die vorangegangene Analyse der Phasen-FrequenzBeziehung während der Multiplikation bestätigt. Sie erreicht einen Leistungsgewinn von 21 dB und übertrifft damit vergleichbare Designs um 25dB. Dies ermöglicht die Kombination von Phasensteuerung, Frequenzvervielfachung und Vorverstärkung. Der HochfrequenzWirkungsgrad wird um das 40-fache auf 0.99 % bei einer Gesamtleistungsaufnahme von 105 mW gesteigert. Motiviert durch den verzerrenden Effekt des Strahlenschielens in phasengesteuerten Breitbandarraysystemen, wird eine neuartige analoge hybride Strahlsteuerungsarchitektur untersucht, die phasenverzögerte und zeitverzögerte Steuerung kombiniert. Damit wird sowohl das Strahlenschielen phasenverzögerter Systeme als auch der große Flächenverbrauch zeitverzögerter Schaltungen reduziert. Es wird ein analytisches Entwurfsverfahren vorgestellt, das zu dem Forschungsergebnis führt, dass in einem idealen System ein Potenzial zur Reduktion des Strahlenschielens von mehr als 83 % besteht. Dabei wird die Zunahme des Flächenverbrauchs durch die Verringerung des Strahlenschielens aufgewogen. Es wird ein IC mit einer geringen Leistungsaufnahme von 4.3mW hergestellt und charakterisiert. Dabei wird die erste Zeitverzögerungsschaltung entworfen, die bei über 200 GHz arbeitet. Durch die Erzeugung eines Großteils der Strahlrichtung mittels Zeitverzögerung kann das Schielen des Strahls bei Messungen um mehr als 75% reduziert werden, während der nachfolgende Phasenschieber eine kontinuierliche Steuerung der Strahlrichtung gewährleistet. Insgesamt kann die benötigte Siliziumfläche im Vergleich zu zeitverzögerten Systemen im gleichen Frequenzbereich auf 43 % reduziert werden. Auf der Grundlage von Studien zur optimalen Signaleinspeisung und Eingangsanpassung einer Gilbert-Zelle wird ein Ultrabreitband-Mischer mit geringem Stromverbrauch entworfen. Dieser erreicht eine Ausgangsbandbreite von mehr als 100 GHz, die den Stand der Technik um 23% übertrifft. Bei einer Wandlungsverstärkung von –13dB ermöglicht dies Datenraten von mehr als 100 Gbps im BPSK-Betrieb. Die Erkenntnisse werden in einem integrierten, breitbandigen Sender konsolidiert, der um 246 GHz arbeitet und die höchsten veröffentlichten gemessenen Datenraten für Sender mit LO-Signalkette und Leistungsverstärker im BPSK-Betrieb auf 56 Gbps verdoppelt. Die daraus resultierende Transmitter-Effizienz von 7.4 pJ/bit verbessert den Stand der Technik um 70 % bzw. 50 % gegenüber BPSKund Quadratur Phasenumtastung (QPSK)-Systemen. Zusammen bilden die Ergebnisse dieser Arbeit die Grundlage für stromsparende, effiziente, mobile Funkanwendungen der nächsten Generation mit einem Vielfachen der heute verfügbaren Datenraten.:Abstract 3 Zusammenfassung 5 List of Symbols 11 List of Acronyms 17 Prior Publications 19 1. Introduction 21 1.1. Motivation........................... 21 1.2. Objective of this Thesis ................... 25 1.3. Structure of this Thesis ................... 27 2. Overview of Employed Technologies and Techniques 29 2.1. IntegratedCircuitTechnology................ 29 2.2. Transmission Lines and Passive Structures . . . . . . . . 35 2.3. DigitalModulation ...................... 41 3. Frequency Quadrupler 45 3.1. Theoretical Analysis of Frequency Multiplication Circuits 45 3.2. Phase-Controlled Push-Push Principle for Frequency Quadrupling.......................... 49 3.3. Stand-alone Phase-Controlled Push-Push Quadrupler . 60 3.4. Phase-Controlled Push-Push Quadrupler based LO-chain with High Output Power ............... 72 9 4. Array Systems and Dynamic Beam Steering 91 4.1. Theoretical Analysis of BeamSteering. . . . . . . . . . . 95 4.2. Local Oscillator Phase Shifting with Vector-Modulator PhaseShifters......................... 107 4.3. Hybrid True-Time and Phase-Delayed Beam Steering . 131 5. Ultra-Wide Band Modulator for BPSK Operation 155 6. Broadband BPSK Transmitter System for Datarates up to 56 Gbps 167 6.1. System Architecture ..................... 168 6.2. Measurement Technique and Results . . . . . . . . . . . 171 6.3. Summary and performance comparison . . . . . . . . . 185 7. Conclusion and Outlook 189 A. Appendix 195 Bibliography 199 List of Figures 227 Note of Thanks 239 Curriculum Vitae 24

    SILICON TERAHERTZ ELECTRONICS: CIRCUITS AND SYSTEMS FOR FUTURE APPLICATIONS

    Full text link
    The terahertz frequency bands are gaining increasing attention these days for the potential applications in imaging, sensing, spectroscopy, and communication. These applications can be used in a wide range of fields, such as military, security, biomedical analysis, material science, astronomy, etc. Unfortunately, utilizing these frequency bands is very challenging due to the notorious ”terahertz gap”. Consequently, current terahertz systems are very bulky and expensive, sometimes even require cryogenic conditions. Silicon terahertz electronics now becomes very attractive, since it can achieve significantly lower cost and make portable consumer terahertz devices feasible. However, due to the limited device fmax and low breakdown voltage, signal generation and processing on silicon platform in this frequency range is challenging. This thesis aims to tackle these challenges and implement high-performance terahertz systems. First of all, the devices are investigated under the terahertz frequency range and optimum termination conditions for maximizing the efficacy of the devices is derived. Then, novel passive surrounding networks are designed to provide the devices with the optimal termination conditions to push the performances of the terahertz circuit blocks. Finally, the high-performance circuit blocks are used to build terahertz systems, and system-level innovations are also proposed to push the state of the art forward. In Chapter 2, using a device-centric bottom-up design method, a 210-GHz harmonic oscillator is designed. With the parasitic tuning mechanism, a wide frequency tuning range is achieved without using lossy varactors. A passive network based on the return-path gap coupler and self-feeding structure is also designed to provide optimal terminations for the active devices to maximize the harmonic power generation. Fabricated with a 0.13-um SiGe BiCMOS process, the oscillator is highly compact with a core size of only 290x95 um2. The output frequency can be tuned from 197.5 GHz to 219.7 GHz, which is around 10.6% compared to the center frequency. It also achieves a peak output power and dc-to-RF efficiency of 1.4 dBm and 2.4%, respectively. The measured output phase noise at 1 MHz offset is -87.5 dBc/Hz. The high power, wide tuning range, low phase noise, as well as compact size, make this oscillator very suitable for terahertz systems integration. In Chapter 3, the design of a 320-GHz fully-integrated terahertz imaging system is described. The system is composed of a phase-locked high-power transmitter and a coherent high-sensitivity subharmonic-mixing receiver, which are fabricated using a 0.13-um SiGe BiCMOS technology. To enhance the imaging sensitivity, a heterodyne coherent detection scheme is utilized. To obtain frequency coherency, fully-integrated phase-locked loops are implemented on both the transmitter and receiver chips. According to the measurement, consuming a total dc power of 605 mW, the transmitter chip achieves a peak radiated power of 2 mW and a peak EIRP of 21.1 dBm. The receiver chip achieves an equivalent incoherent responsivity of more than 7.26 MV/W and a sensitivity of 70.1 pW under an integration bandwidth of 1 kHz, with a total dc power consumption of 117 mW. The achieved sensitivity with this proposed coherent imaging transceiver is around ten times better compared with other state-of-the-art incoherent imagers. In Chapter 4, a spatial-orthogonal ASK transmitter architecture for high-speed terahertz wireless communication is presented. The self-sustaining oscillator-based transmitter architecture has an ultra-compact size and excellent power efficiency. With the proposed high-speed constant-load switch, significantly reduced modulation loss is achieved. Using polarization diversity and multi-level modulation, the throughput is largely enhanced. Array configuration is also adopted to enhance the link budget for higher signal quality and longer communication range. Fabricated in a 0.13-um SiGe BiCMOS technology, the 220-GHz transmitter prototype achieves an EIRP of 21 dBm and dc-to- THz-radiation efficiency of 0.7% in each spatial channel. A 24.4-Gb/s total data rate over a 10-cm communication range is demonstrated. With an external Teflon lens system, the demonstrated communication range is further extended to 52 cm. Compared with prior art, this prototype demonstrates much higher transmitter efficiency. In Chapter 5, an entirely-on-chip frequency-stabilization feedback mechanism is proposed, which avoids the use of both frequency dividers and off-chip references, achieving much lower system integration cost and power consumption. Using this mechanism, a 301.7-to-331.8-GHz source prototype is designed in a 0.13-um SiGe BiCMOS technology. According to the measurement, the source consumes a dc power of only 51.7 mW. The output phase noise is -71.1 and -75.2 dBc/Hz at 100 kHz and 1 MHz offset, respectively. A -13.9-dBm probed output power is also achieved. Overall, the prototype source demonstrates the largest output frequency range and lowest power consumption while achieving comparable phase noise and output power performances with respect to the state of the art. All the designs demonstrated in this thesis achieve good performances and push the state of the art forward, paving the way for implementation of more sophisticated terahertz circuits and systems for future applications

    Optoelectronic oscillator for 5G wireless networks and beyond

    Get PDF
    With the development of 5G wireless network and beyond, the wireless carrier frequency will definitely reach millimeter-wave (mm-wave) and even terahertz (THz). As one of the key elements in wireless networks, the local oscillator (LO) needs to operate at mm-wave and THz band with lower phase noise, which becomes a major challenge for commercial LOs. In this article, we investigate the recent developments of the electronic integrated circuit (EIC) oscillator and the optoelectronic oscillator (OEO), and especially investigate the prospect of OEO serving as a qualified LO in the 5G wireless network and beyond. Both the EIC oscillators and OEOs are investigated, including their basic theories of operation, representative techniques and some milestones in applications. Then, we compare the performances between the EIC oscillators and the OEOs in terms of frequency accuracy, phase noise, power consumption and cost. After describing the specific requirements of LO based on the standard of 5G and 6G wireless communication systems, we introduce an injection-locked OEO architecture which can be implemented to distribute and synchronize LOs. The OEO has better phase noise performance at high frequency, which is greatly desired for LO in 5G wireless network and beyond. Besides, the OEO provides an easy and low-loss method to distribute and synchronize mm-wave and THz LOs. Thanks to photonic integrated circuit development, the power consumption and cost of OEO reduce gradually. It is foreseeable that the integrated OEO with lower cost may have a promising prospect in the 5G wireless network and beyond

    Quantum Dash Multi-Wavelength Lasers for Next Generation High Capacity Multi-Gb/s Millimeter-Wave Radio-over-Fiber Wireless Communication Networks

    Get PDF
    The ever-increasing proliferation of mobile users and new technologies with different applications and features, and the demand for reliable high-speed high capacity, pervasive connectivity and low latency have initiated a roadmap for the next generation wireless networks, fifth generation (5G), which is set to revolutionize the existing wireless communications. 5G will use heterogeneous higher carrier frequencies from the plentifully available spectra in the higher microwave and millimeter-wave (MMW) bands, including licensed and unlicensed spectra, for achieving multi-Gb/s wireless connectivity and overcoming the existing wireless spectrum crunch in the sub-6 GHz bands, resulting from the tremendous growth of data-intensive technologies and applications. The use of MMW when complemented by multiple-input-multiple-output (MIMO) technology can significantly increase data capacity through spatial multiplexing, and improve coverage and system reliability through spatial diversity. However, high-frequency MMW signals are prone to extreme propagation path loss and are challenging to generate and process with conventional bandwidth-limiting electronics. In addition, the existing digitized fronthaul for centralized radio access network (C-RAN) architecture is considered inefficient for 5G and beyond. Thus, to fully exploit the promising MMW 5G new radio (NR) resource and to alleviate the electronics and fronthaul bottleneck, microwave photonics with analog radio-over-fiber (A-RoF) technology becomes instrumental for optically synthesizing and processing broadband RF MMW wireless signals over optical links. The generation and distribution of high-frequency MMW signals in the optical domain over A-RoF links facilitate the seamless integration of high-capacity, reliable and transparent optical networks with flexible, mobile and pervasive wireless networks, extending the reach and coverage of high-speed broadband MMW wireless communications. Consequently, this fiber-wireless integration not only overcomes the problem of high bandwidth requirements, transmission capacity and span limitation but also significantly reduces system complexity considering the deployment of ultra-dense small cells with large numbers of 5G remote radio units (RRUs) having massive MIMO antennas with beamforming capabilities connected to the baseband units (BBU) in a C-RAN environment through an optical fiber-based fronthaul network. Nevertheless, photonic generation of spectrally pure RF MMW signals either involves complex circuitry or suffers from frequency fluctuation and phase noise due to uncorrelated optical sources, which can degrade system performance. Thus simple highly integrated and cost-efficient low-noise optical sources are required for next-generation MMW RoF wireless transmission systems. More recently, well-designed quantum confined nanostructures such as semiconductor quantum dash/dot multi-wavelength lasers (QD-MWLs) have attracted more interest in the photonic generation of RF MMW signals due to their simple compact and integrated design with highly coherent and correlated optical signals having a very low phase and intensity noise attributed to the inherent properties of QD materials. The main theme of this thesis revolves around the experimental investigation of such nanostructures on the device and system level for applications in high-speed high-capacity broadband MMW RoF-based fronthaul and wireless access networks. Several photonic-aided high-capacity long-reach MMW RoF wireless transmission systems are proposed and experimentally demonstrated based on QD-MWLs with the remote distribution and photonic generation of broadband multi-Gb/s MMW wireless signals at 5G NR (FR2) in the K-band, Ka-band and V-band in simplex, full-duplex and MIMO configurations over 10 to 50 km optical fiber and subsequent wireless transmission and detection. The QD-MWLs-based photonic MMW RoF wireless transmission systems’ designs and experimental demonstrations could usher in a new era of ultra-high-speed broadband multi-Gb/s wireless communications at the MMW frequency bands for next-generation wireless networks. The QD-MWLs investigated in this thesis include a simple monolithically integrated and highly coherent low-noise single-section semiconductor InAs/InP QD buried heterostructure passively mode-locked (PML) laser-based optical coherent frequency comb (CFC) and a novel monolithic highly correlated low-noise semiconductor InAs/InP buried heterostructure common-cavity QD dual-wavelength distributed feedback laser (QD-DW-DFBL). The performance of each device is thoroughly characterized experimentally in terms of optical phase noise, relative intensity noise (RIN), timing jitter and RF phase noise exhibiting promising results. Based on these devices, different long-reach photonic MMW RoF wireless transmission systems, including simplex single-input-single-output (SISO) and multiple-input-multiple-output (MIMO) and bidirectional configurations, are proposed and experimentally demonstrated with real-time remote electrical RF synthesizer-free all-optical frequency up-conversion, wireless transmission and successful reception of wide-bandwidth multi-level quadrature amplitude modulated (M-QAM) RF MMW wireless signals having bit rates ranging from 4 Gb/s to 36 Gb/s over different hybrid fiber-wireless links comprising of standard single mode fiber (SSMF) and indoor wireless channel. The end-to-end links are thoroughly investigated in terms of error-vector-magnitude (EVM), bit-error-rat (BER), constellations and eye diagrams, realizing successful error-free transmission. Finally, novel high-capacity spectrally efficient MIMO and optical beamforming enabled photonic MMW RoF wireless transceivers design and methods based on QD-MWLs with wavelength division multiplexing (WDM) and space division multiplexing (SDM) are proposed and discussed. A proof-of-concept implementation of the proposed photonic MMW RoF wireless transmission system is also simulated in a simple WDM-based configuration with bidirectional 4×4 MIMO MMW carrier streams

    New photonic architectures and devices for generation and detection of sub-THz and THz waves

    Get PDF
    The development of high-quality and reliable devices in the THz frequency region to fill the existing technological gap has become a major concern. This is chiefly motivated by the need of a widespread exploitation of the extensive variety of identified applications in this frequency region by a wide range of users, including the non-scientific community. The photonic approaches used for these purposes offer important and exclusive advantages over other existing alternatives, which have as a main representative the all-electronic technology, especially in terms of frequency range coverage, possibility of photonic distribution using optical fibers, weight and Electromagnetic Interference (EMI) immunity. Nevertheless, the optical techniques have traditionally provided with worse performance in terms of phase noise, tunability and dynamic range (in generation), and conversion ratio (in detection) when compared to state-of-theart all-electronic THz technology. The work accomplished in this thesis focuses on the design, development and validation of new photonic architectures and devices for both generation and detection of sub-THz and THz waves which overcome the drawbacks of optical techniques at this frequency region while maintaining all their advantages. In this thesis, several photonic sub-THz and THz generation systems have been developed using Difference Frequency Generation (DFG) architectures in which the DFG source is provided by an Optical Frequency Comb Generator (OFCG) and optical mode selection. Different devices and techniques are investigated for each part of the system before arriving to the final high performance synthesizer. Passively Mode-Locked Laser Diodes (PMMLDs) are firstly evaluated as integrated OFCG. An improved design of the OFCG is achieved with a scheme based on a Discrete Mode (DM) laser under Gain- Switching (GS) regime and optical span expansion by the use of a single Electro- Optical (EO) phase modulator. As optical mode selection, both high selective optical filtering and Optical Injection Locking (OIL) are used and evaluated. A commercial 50 GHz photodiode (PD) and an n-i-pn-i-p superlattice THz photomixer are employed as photodetector for Optical to THz conversion. The final reported system consists on an OFCG based on GS, OIL as mode selection strategy and an n-i-pn-i-p superlattice photomixer. This synthesizer offers a wide frequency range (60-140 GHz), readily scalable to a range between 10 GHz and values well above 1 THz. Quasi-continuous tunability is offered in the whole frequency range, with a frequency resolution of 0.1 Hz at 100 GHz that can be straightforwardly improved to 0.01 Hz at 100 GHz and 0.1 Hz at 1 THz. The measured FWHM at 120 GHz is <10 Hz, only limited by the measurement instrumentation. The system offers excellent frequency and power stability with frequency and power deviations over 1 hour of 5 Hz and 1.5 dB, respectively. These values are also limited by both the accuracy and uncertainty of the measurement setup. The performance achieved by this photonic sub-THz and THz synthesizer for most figures of merit matches or even surpasses those of commercial stateof- the-art all-electronic systems, and overcomes some of their characteristics in more than one million times when compared to commercial state-of-the-art photonic solutions. The detection part of this thesis explores the use of photonic architectures based on EO heterodyne receivers and the key devices that encompass these architectures: photonic Local Oscillators (LOs) and EO mixers. First results are developed at microwave frequencies (<15 GHz) using an Ultra-Nonlinear Semiconductor Amplifier (XN-SOA) as EO mixer and a GS based photonic LO. It is demonstrated how this LO device based on GS provides with a significant improvement in the performance of the overall EO receiver when compared to a traditional linearly modulated LO. Furthermore, this detection architecture is validated in an actual application (photonic imaging array), featuring scalability, flexibility and reasonable conversion ratios. After this, an EO heterodyne receiver is demonstrated up to frequencies of 110 GHz. The photonic LO employed is the abovementioned photonic sub- THz synthesizer developed in this thesis, while the EO mixer is an np-i-pn quasi ballistic THz detector. The first fabricated sample of this novel device is used, which is optimized for homodyne/heterodyne detection. The resulting sub-THz EO heterodyne receiver has conversion ratios around -75 dB. It works under zero-bias conditions, which together with the photonic distribution of the LO offers a high potential for remote detection of sub-THz and THz waves. In summary, new photonic architectures and devices are able to provide with state-of-the-art performance for generation of sub-THz and THz waves. In the case of EO heterodyne detection at sub-THz and THz frequency regions, photonic techniques are improving their performance and are closer to offer an alternative to all-electronic detectors. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------El desarrollo de dispositivos fiables y de alta calidad en el rango frecuencial de Terahercios (THz) con el fin de cubrir el actual vacío tecnológico se ha convertido en una importante inquietud científica. Esto está principalmente motivado por la necesidad de explotar el gran número de aplicaciones identificadas en esta región frecuencial por un gran número de usuarios, incluyendo a usuarios no científicos. El enfoque fotónico empleado para estos propósitos ofrece importantes y exclusivas ventajas sobre otras alternativas existentes, que tienen como principal representante a la tecnología electrónica, especialmente en términos de rango de frecuencia de funcionamiento, posibilidad de distribución fotónica con fibras ópticas, peso, e inmunidad electromagnética. No obstante, las técnicas fotónicas tradicionalmente han ofrecido peores prestaciones en términos de ruido de fase, sintonía y rango dinámico (en generación) y ratio de conversión (en detección) con respecto a la tecnología electrónica de THz en el estado del arte. El trabajo realizado en esta tesis se centra en el diseño, desarrollo y validación de nuevas arquitecturas y componentes fotónicos tanto para generación como detección de ondas de sub-THz y THz que permitan solucionar las desventajas de las técnicas ópticas manteniendo todas sus ventajas. En esta tesis, varios sistemas de generación de sub-THz y THz han sido desarrollados utilizando arquitecturas Difference Frequency Generation (DFG) en las que la fuente DFG es proveída por un Optical Frequency Comb Generator (OFCG) y selección de modos ópticos. Diferentes dispositivos y técnicas son investigados para cada parte del sistema hasta conseguir un sintetizador de altas prestaciones. Passively Mode-Locked Laser Diodes (PMMLDs) son inicialmente evaluados como OFCG integrados. Un diseño mejorado del OFCG es conseguido mediante el uso de un esquema basado en un láser Discrete Mode (DM) bajo régimen Gain Switching (GS) y expansión del ancho de banda óptico mediante el uso de un modulador de fase Electro-Óptico (EO). Como estrategia de selección de modos ópticos, tanto filtrado óptico altamente selectivo como Optical Injection Locking (OIL) son usados y evaluados. Un fotodiodo comercial de ancho de banda 50 GHz y un fotomezclador de THz de superred n-i-pn-i-p son empleados. El sistema de generación final que se presenta en esta tesis consiste en un OFCG basado en GS, OIL como técnica de selección de modos ópticos y un fotomezclador de THz de superred n-i-pn-i-p. Este sintetizador ofrece un rango de funcionamiento de 60 a 140 GHz, directamente escalable a un rango entre 10 GHz y valores más allá de un THz. Sintonía cuasi-continua es ofrecida en todo el rango de frecuencia de operación, con una resolución en frecuencia de 0.1 Hz a 100 GHz que puede ser directamente escalable a 0.01 Hz a 100 GHz y 0.1 Hz a 1 THz. El ancho de línea a 3-dB de la señal a 120 GHz es menor de 10 Hz, solo limitada por la instrumentación de medida. El sistema ofrece una excelente estabilidad en potencia y frecuencia, con desviaciones sobre una hora de operación de 1.5 dB y 5 Hz, respectivamente. Estos valores también están limitados por la precisión e incertidumbre de la instrumentación de medida. Las prestaciones conseguidas por este sintetizador fotónico de sub-THz y THz para la mayoría de figuras de mérito, igualan o superan aquellas de las mejores soluciones comerciales electrónicas en el estado del arte, y supera algunas de estas características en más de un millón de veces en el caso de soluciones fotónicas comerciales en el estado del arte. La parte de detección de esta tesis explora el uso de arquitecturas fotónicas basadas en receptores EO heterodinos y los componentes clave que forman estas arquitecturas: Oscilador Local (OL) fotónico y mezcladores EO. Los primeros resultados son desarrollados en el entorno de microondas (<15 GHz) usando un amplificador de semiconductor óptico ultra no lineal (XN-SOA) como mezclador EO y un OL fotónico basado en GS. Se demuestra como este OL basado en GS ofrece una mejora significativa de las prestaciones del receptor con respecto al uso de OL fotónicos tradicionales basados en modulación lineal. Además, esta arquitectura de detección es validada en una aplicación real (imaging array fotónico), ofreciendo escalabilidad, flexibilidad y ratios de conversión razonables. Tras esto, un receptor EO heterodino es demostrado hasta frecuencias de 110 GHz. El OL fotónico empleado es el sintetizador de altas prestaciones presentado en esta tesis, mientras que el mezclador EO es un nuevo detector de THz: el np-i-pn cuasi-balístico. La primera muestra fabricada de estos nuevos dispositivos, especialmente diseñados y optimizados para detección homodina y heterodina, es empleada. El receptor EO heterodino resultante ofrece ratios de conversión de -75 dB. Este dispositivo es capaz de trabajar sin alimentación, lo que unido a la distribución fotónica del OL, ofrece un gran potencial para detección remota de ondas de sub-THz y THz. En resumen, las nuevas arquitecturas y dispositivos fotónicos presentados en esta tesis son capaces de ofrecer prestaciones en el estado del arte para generación de ondas de sub-THz y THz. En el caso de detectores EO heterodinos en frecuencias de sub-THz y THz, las técnicas fotónicas están mejorando sus prestaciones significativamente y están cada vez más cerca de ofrecer una alternativa a detectores electrónicos en el estado del arte

    Millimeter-Wave Super-Regenerative Receivers for Wireless Communication and Radar

    Get PDF
    Today’s world is becoming increasingly automated and interconnected with billions of smart devices coming online, leading to a steep rise in energy consumption from small microelectronics. This coincides with an urgent push to transform global energy production to green energies, causing disruptions and energy shortages, and making the case for efficient energy use ever more pressing. Two major areas where high growth is expected are the fields of wireless communication and radar sensors. Millimeter-wave frequency bands are planned for fifth-generation (5G) and sixth-generation (6G) cellular communication standards, as well as automotive frequency-modulated continuous wave (FMCW) radar systems for driving assistance and automation. Fast silicon-based technologies enable these advances by operating at high maximum frequencies, such as the silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) technologies. However, even the fastest transistors suffer from low and energy expensive gains at millimeter-wave frequencies. Rather than incremental improvements in circuit efficiency using conventional approaches, a disruptive revolution for green microelectronics could be enabled by exploring the low-power benefits of the super-regenerative receiver for some applications. The super-regenerative receiver uses a regenerative oscillator circuit to increase the gain by positive feedback, through coupling energy from the output back into the input. Careful bias and control of the circuit enables a very large gain from a small number of transistors and a very low energy dissipation. Thus, the super-regenerative oscillator could be used to replace amplifier circuits in high data rate wireless communication systems, or as active reflectors to increase the range of FMCW radar systems, greatly reducing the power consumption. The work in this thesis presents fundamental scientific research into the topic of energy-efficient millimeter-wave super-regenerative receivers for use in civilian wireless communication and radar applications. This research work covers the theory, analysis, and simulations, all the way up to the proof of concept, hardware realization, and experimental characterization. Analysis and modeling of regenerative oscillator circuits is presented and used to improve the understanding of the circuit operation, as well as design goals according to the specific application needs. Integrated circuits are investigated and characterized as a proof of concept for a high data rate wireless communication system operating between 140–220 GHz, and an automotive radar system operating at 60 GHz. Amplitude and phase regeneration capabilities for complex modulation are investigated, and principles for spectrum characterization are derived. The circuits are designed and fabricated in a 130 nm SiGe HBT technology, combining bipolar and complementary metal-oxide semiconductor (BiCMOS) transistors. To prove the feasibility of the research concepts, the work achieves a wireless communication link at 16 Gbit/s over 20 cm distance with quadrature amplitude modulation (QAM), which is a world record for the highest data rate ever reported in super-regenerative circuits. This was powered by a super-regenerative oscillator circuit operating at 180 GHz and providing 58 dB of gain. Energy efficiency is also considerably high, drawing 8.8 mW of dc power consumption, which corresponds to a highly efficient 0.6 pJ/bit. Packaging and module integration innovations were implemented for the system experiments, and additional broadband circuits were investigated to generate custom quench waveforms to further enhance the data rate. For radar active reflectors, a regenerative gain of 80 dB is achieved at 60 GHz from a single circuit, which is the best in its frequency range, despite a low dc power consumption of 25 mW
    corecore