16 research outputs found

    D5.1 SHM digital twin requirements for residential, industrial buildings and bridges

    Get PDF
    This deliverable presents a report of the needs for structural control on buildings (initial imperfections, deflections at service, stability, rheology) and on bridges (vibrations, modal shapes, deflections, stresses) based on state-of-the-art image-based and sensor-based techniques. To this end, the deliverable identifies and describes strategies that encompass state-of-the-art instrumentation and control for infrastructures (SHM technologies).Objectius de Desenvolupament Sostenible::8 - Treball Decent i Creixement EconòmicObjectius de Desenvolupament Sostenible::9 - Indústria, Innovació i InfraestructuraPreprin

    Novel Approaches for Structural Health Monitoring

    Get PDF
    The thirty-plus years of progress in the field of structural health monitoring (SHM) have left a paramount impact on our everyday lives. Be it for the monitoring of fixed- and rotary-wing aircrafts, for the preservation of the cultural and architectural heritage, or for the predictive maintenance of long-span bridges or wind farms, SHM has shaped the framework of many engineering fields. Given the current state of quantitative and principled methodologies, it is nowadays possible to rapidly and consistently evaluate the structural safety of industrial machines, modern concrete buildings, historical masonry complexes, etc., to test their capability and to serve their intended purpose. However, old unsolved problematics as well as new challenges exist. Furthermore, unprecedented conditions, such as stricter safety requirements and ageing civil infrastructure, pose new challenges for confrontation. Therefore, this Special Issue gathers the main contributions of academics and practitioners in civil, aerospace, and mechanical engineering to provide a common ground for structural health monitoring in dealing with old and new aspects of this ever-growing research field

    Millimeter-Wave InSAR Image Reconstruction Approach by Total Variation Regularized Matrix Completion

    No full text
    Millimeter-wave interferometric synthetic aperture radiometer (InSAR) can provide high-resolution observations for many applications by using small antennas to achieve very large synthetic aperture. However, reconstruction of a millimeter-wave InSAR image has been proven to be an ill-posed inverse problem that degrades the performance of InSAR imaging. In this paper, a novel millimeter-wave InSAR image reconstruction approach, referred to as InSAR-TVMC, by total variation (TV) regularized matrix completion (MC) in two-dimensional data space, is proposed. Based on the a priori knowledge that natural millimeter-wave images statistically hold the low-rank property, the proposed approach represents the object images as low-rank matrices and formulates the data acquisition of InSAR in two-dimensional data space directly to undersample visibility function samples. Subsequently, using the undersampled visibility function samples, the optimal solution of the InSAR image reconstruction problem is obtained by simultaneously adopting MC techniques and TV regularization. Experimental results on simulated and real millimeter-wave InSAR image data demonstrate the effectiveness and the significant improvement of the reconstruction performance of the proposed InSAR-TVMC approach over conventional and one-dimensional sparse InSAR image reconstruction approaches

    Millimeter-Wave InSAR Image Reconstruction Approach by Total Variation Regularized Matrix Completion

    No full text
    Millimeter-wave interferometric synthetic aperture radiometer (InSAR) can provide high-resolution observations for many applications by using small antennas to achieve very large synthetic aperture. However, reconstruction of a millimeter-wave InSAR image has been proven to be an ill-posed inverse problem that degrades the performance of InSAR imaging. In this paper, a novel millimeter-wave InSAR image reconstruction approach, referred to as InSAR-TVMC, by total variation (TV) regularized matrix completion (MC) in two-dimensional data space, is proposed. Based on the a priori knowledge that natural millimeter-wave images statistically hold the low-rank property, the proposed approach represents the object images as low-rank matrices and formulates the data acquisition of InSAR in two-dimensional data space directly to undersample visibility function samples. Subsequently, using the undersampled visibility function samples, the optimal solution of the InSAR image reconstruction problem is obtained by simultaneously adopting MC techniques and TV regularization. Experimental results on simulated and real millimeter-wave InSAR image data demonstrate the effectiveness and the significant improvement of the reconstruction performance of the proposed InSAR-TVMC approach over conventional and one-dimensional sparse InSAR image reconstruction approaches

    Sensor Signal and Information Processing II

    Get PDF
    In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem solving. These algorithms have the capacity to generalize and discover knowledge for themselves and learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topic ranges from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspiring filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensors processing

    BDS GNSS for Earth Observation

    Get PDF
    For millennia, human communities have wondered about the possibility of observing phenomena in their surroundings, and in particular those affecting the Earth on which they live. More generally, it can be conceptually defined as Earth observation (EO) and is the collection of information about the biological, chemical and physical systems of planet Earth. It can be undertaken through sensors in direct contact with the ground or airborne platforms (such as weather balloons and stations) or remote-sensing technologies. However, the definition of EO has only become significant in the last 50 years, since it has been possible to send artificial satellites out of Earth’s orbit. Referring strictly to civil applications, satellites of this type were initially designed to provide satellite images; later, their purpose expanded to include the study of information on land characteristics, growing vegetation, crops, and environmental pollution. The data collected are used for several purposes, including the identification of natural resources and the production of accurate cartography. Satellite observations can cover the land, the atmosphere, and the oceans. Remote-sensing satellites may be equipped with passive instrumentation such as infrared or cameras for imaging the visible or active instrumentation such as radar. Generally, such satellites are non-geostationary satellites, i.e., they move at a certain speed along orbits inclined with respect to the Earth’s equatorial plane, often in polar orbit, at low or medium altitude, Low Earth Orbit (LEO) and Medium Earth Orbit (MEO), thus covering the entire Earth’s surface in a certain scan time (properly called ’temporal resolution’), i.e., in a certain number of orbits around the Earth. The first remote-sensing satellites were the American NASA/USGS Landsat Program; subsequently, the European: ENVISAT (ENVironmental SATellite), ERS (European Remote-Sensing satellite), RapidEye, the French SPOT (Satellite Pour l’Observation de laTerre), and the Canadian RADARSAT satellites were launched. The IKONOS, QuickBird, and GeoEye-1 satellites were dedicated to cartography. The WorldView-1 and WorldView-2 satellites and the COSMO-SkyMed system are more recent. The latest generation are the low payloads called Small Satellites, e.g., the Chinese BuFeng-1 and Fengyun-3 series. Also, Global Navigation Satellite Systems (GNSSs) have captured the attention of researchers worldwide for a multitude of Earth monitoring and exploration applications. On the other hand, over the past 40 years, GNSSs have become an essential part of many human activities. As is widely noted, there are currently four fully operational GNSSs; two of these were developed for military purposes (American NAVstar GPS and Russian GLONASS), whilst two others were developed for civil purposes such as the Chinese BeiDou satellite navigation system (BDS) and the European Galileo. In addition, many other regional GNSSs, such as the South Korean Regional Positioning System (KPS), the Japanese quasi-zenital satellite system (QZSS), and the Indian Regional Navigation Satellite System (IRNSS/NavIC), will become available in the next few years, which will have enormous potential for scientific applications and geomatics professionals. In addition to their traditional role of providing global positioning, navigation, and timing (PNT) information, GNSS navigation signals are now being used in new and innovative ways. Across the globe, new fields of scientific study are opening up to examine how signals can provide information about the characteristics of the atmosphere and even the surfaces from which they are reflected before being collected by a receiver. EO researchers monitor global environmental systems using in situ and remote monitoring tools. Their findings provide tools to support decision makers in various areas of interest, from security to the natural environment. GNSS signals are considered an important new source of information because they are a free, real-time, and globally available resource for the EO community

    Applications of Remote Sensing Data in Mapping of Forest Growing Stock and Biomass

    Get PDF
    This Special Issue (SI), entitled "Applications of Remote Sensing Data in Mapping of Forest Growing Stock and Biomass”, resulted from 13 peer-reviewed papers dedicated to Forestry and Biomass mapping, characterization and accounting. The papers' authors presented improvements in Remote Sensing processing techniques on satellite images, drone-acquired images and LiDAR images, both aerial and terrestrial. Regarding the images’ classification models, all authors presented supervised methods, such as Random Forest, complemented by GIS routines and biophysical variables measured on the field, which were properly georeferenced. The achieved results enable the statement that remote imagery could be successfully used as a data source for regression analysis and formulation and, in this way, used in forestry actions such as canopy structure analysis and mapping, or to estimate biomass. This collection of papers, presented in the form of a book, brings together 13 articles covering various forest issues and issues in forest biomass calculation, constituting an important work manual for those who use mixed GIS and RS techniques

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Global Monitoring for Security and Stability (GMOSS) - Integrated Scientific and Technological Research Supporting Security Aspects of the European Union

    Get PDF
    This report is a collection of scientific activities and achievements of members of the GMOSS Network of Excellence during the period March 2004 to November 2007. Exceeding the horizon of classical remote-sensing-focused projects, GMOSS is characterized by the integration of political and social aspects of security with the assessment of remote sensing capabilities and end-users support opportunities. The report layout reflects the work breakdown structure of GMOSS and is divided into four parts. Part I Concepts and Integration addresses the political background of European Security Policy and possibilities for Earth Observation technologies for a contribution. Besides it illustrates integration activities just as the GMOSS Gender Action Plan or a description of the GMOSS testcases. Part II of this book presents various Application activities conducted by the network partners. The contributions vary from pipeline sabotage analysis in Iraq to GIS studies about groundwater vulnerability in Gaza Strip, from Population Monitoring in Zimbabwe to Post-Conflict Urban Reconstruction Assessments and many more. Part III focuses on the research and development of image processing methods and Tools. The themes range from SAR interferometry for the measurement of Surface Displacement to Robust Satellite Techniques for monitoring natural hazards like volcanoes and earthquakes. Further subjects are the 3D detection of buildings in VHR imagery or texture analysis techniques on time series of satellite images with variable illumination and many other more. The report closes with Part IV. In the chapter ÂżThe Way ForwardÂż a review on four years of integrated work is done. Challenges and achievements during this period are depicted. It ends with an outlook about a possible way forward for integrated European security research.JRC.G.2-Support to external securit
    corecore