78 research outputs found

    A Millimeter-Wave Radar Microfabrication Technique and Its Application in Detection of Concealed Objects.

    Full text link
    Millimeter-wave (MMW) radars are envisioned for a number of safety and security applications such as collision-avoidance, navigation and standoff target detection in all weather conditions. This work focuses on two MMW radar applications: (1) phenomenology of radar backscatter from the human body for the purpose of identification and detection of concealed objects on the body (2) microfabrication of advanced MMW radar to achieve compact and low-cost systems for autonomous navigation. In MMW band, the wavelength (1 mm ~ 1 cm) is long enough to allow signal penetration through cluttered atmosphere and clothing with little attenuation and short enough to allow for fabrication of small-size radar systems. Hence, this frequency band is well suited for the design of small sensors capable of obstacle detection and navigation in heavily cluttered environment and detecting hidden objects carried by individuals. For this purpose, a novel non-imaging approach is developed for distinction of walking human body and concealed carried object using polarimetric backscatter Doppler spectrum. This approach does not need radiometric calibration of the radar and preparation of the subject for radar interrogation. It is shown that a coherent polarimetric radar at W-band (95 GHz) or higher frequencies can be used for standoff detection of concealed carried objects. Motivated by these results, the thesis also includes an investigation on developing a technology for compact MMW radar systems. A micromachined, high-resolution, compact and low-power imaging MMW radar operating at 240 GHz intended for obstacle detection in complex environment is introduced. A frequency scanning antenna array micromachined from three layers of stacked silicon wafers is designed to provide 20 beamwidth in azimuth and 80 in elevation with azimuthal beam scanning range of Âą 250. The frequency beam scanning is enabled by a meander rectangular waveguide with a slot array on its broad wall to feed linear microstrip patch antennas microfabricated on a suspended Parylene membrane. This technique offers high fabrication precision; provide easy fabrication and integration with active devices. The performances of the passive components of the radar system are verified using a WR-3 S-parameter and a near-field measurement systems.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91484/1/mvahid_1.pd

    Low-cost CW-LFM radar sensor at 100 GHz

    Get PDF
    This paper presents a W-band high-resolution radar sensor for short-range applications. Low-cost technologies have been properly selected in order to implement a versatile and easily scalable radar system. A large operational bandwidth of 9 GHz, required for obtaining high-range resolution, is attained by means of a frequency multiplication-based architecture. The system characterization to identify the performance-limiting stages and the subsequent design optimization are presented. The assessment of system performance for several representative applications has been carried out

    A Study of Types of Sensors used in Remote Sensing

    Get PDF
    Of late, the science of Remote Sensing has been gaining a lot of interest and attention due to its wide variety of applications. Remotely sensed data can be used in various fields such as medicine, agriculture, engineering, weather forecasting, military tactics, disaster management etc. only to name a few. This article presents a study of the two categories of sensors namely optical and microwave which are used for remotely sensing the occurrence of disasters such as earthquakes, floods, landslides, avalanches, tropical cyclones and suspicious movements. The remotely sensed data acquired either through satellites or through ground based- synthetic aperture radar systems could be used to avert or mitigate a disaster or to perform a post-disaster analysis

    Autonomous Vehicles: MMW Radar Backscattering Modeling of Traffic Environment, Vehicular Communication Modeling, and Antenna Designs

    Full text link
    77 GHz Millimeter-wave (mmWave) radar serves as an essential component among many sensors required for autonomous navigation. High-fidelity simulation is indispensable for nowadays’ development of advanced automotive radar systems because radar simulation can accelerate the design and testing process and help people to better understand and process the radar data. The main challenge in automotive radar simulation is to simulate the complex scattering behavior of various targets in real time, which is required for sensor fusion with other sensory simulation, e.g. optical image simulation. In this thesis, an asymptotic method based on a fast-wideband physical optics (PO) calculation is developed and applied to get high fidelity radar response of traffic scenes and generate the corresponding radar images from traffic targets. The targets include pedestrians, vehicles, and other stationary targets. To further accelerate the simulation into real time, a physics-based statistical approach is developed. The RCS of targets are fit into statistical distributions, and then the statistical parameters are summarized as functions of range and aspect angles, and other attributes of the targets. For advanced radar with multiple transmitters and receivers, pixelated-scatterer statistical RCS models are developed to represent objects as extend targets and relax the requirement for far-field condition. A real-time radar scene simulation software, which will be referred to as Michigan Automotive Radar Scene Simulator (MARSS), based on the statistical models are developed and integrated with a physical 3D scene generation software (Unreal Engine 4). One of the major challenges in radar signal processing is to detect the angle of arrival (AOA) of multiple targets. A new analytic multiple-sources AOA estimation algorithm that outperforms many well-known AOA estimation algorithms is developed and verified by experiments. Moreover, the statistical parameters of RCS from targets and radar images are used in target classification approaches based on machine learning methods. In realistic road traffic environment, foliage is commonly encountered that can potentially block the line-of-sight link. In the second part of the thesis, a non-line-of-sight (NLoS) vehicular propagation channel model for tree trunks at two vehicular communication bands (5.9 GHz and 60 GHz) is proposed. Both near-field and far-field scattering models from tree trunk are developed based on modal expansion and surface current integral method. To make the results fast accessible and retractable, a macro model based on artificial neural network (ANN) is proposed to fit the path loss calculated from the complex electromagnetic (EM) based methods. In the third part of the thesis, two broadband (bandwidth > 50%) omnidirectional antenna designs are discussed to enable polarization diversity for next-generation communication systems. The first design is a compact horizontally polarized (HP) antenna, which contains four folded dipole radiators and utilizing their mutual coupling to enhance the bandwidth. The second one is a circularly polarized (CP) antenna. It is composed of one ultra-wide-band (UWB) monopole, the compact HP antenna, and a dedicatedly designed asymmetric power divider based feeding network. It has about 53% overlapping bandwidth for both impedance and axial ratio with peak RHCP gain of 0.9 dBi.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163001/1/caixz_1.pd

    Der 60 GHz Indoor-Funkkanal - Herausforderungen menschlicher Abschattung

    Get PDF
    Driven by the ever increasing capacity of storage devices and HD video streaming applications, there will be a strong demand for wireless multi-Gbps consumer applications soon. Due to its large available bandwidth and the high allowed transmit power, the unlicensed frequency range around 60 GHz is proving ideal for the realization of such systems. During the development process of 60 GHz multi-gigabit wireless systems, a detailed knowledge of the radio channel is essential. Taking into account research gaps, this dissertation makes a significant contribution to knowledge in the field of 60 GHz channel characterization. The focus is on human shadowing and its influence on the channel characteristics, which leads to a high and time-variant path loss. In order to provide realistic results, sophisticated radio channel models are required for the 60 GHz range. In particular, they should include information in the spatial domain at the receiver and the transmitter as well as take into account time-varying human shadowing. The angular information is necessary in this case to evaluate smart antenna systems. Such comprehensive models are not yet available and therefore represent the major outcome of this dissertation.Wegen seiner großen verfügbaren Bandbreite und der hohen erlaubten Sendeleistung erweist sich der unlizensierte Frequenzbereich um 60 GHz als hervorragend geeignet für die Realisierung drahtloser Multi-Gigabit-Kommunikationssysteme. Während des Entwicklungsprozesses solcher Systeme ist eine detaillierte Kenntnis des Funkkanals unerlässlich. Unter Berücksichtigung offener Fragestellungen leistet die vorliegende Dissertation einen wesentlichen Beitrag zum Wissensstand auf dem Gebiet der 60-GHz-Kanalcharakterisierung. Im Vordergrund steht dabei die Abschattung durch Personen, die bei Trägerfrequenzen um 60 GHz zu einer hohen und gleichzeitig zeitvarianten Funkfelddämpfung führt. Um realistische Ergebnisse zu liefern, sind im 60-GHz-Bereich komplexe Funkkanalmodelle erforderlich, die insbesondere Winkelinformationen am Sender und Empfänger enthalten und die zeitvariante Abschattung durch Personen berücksichtigen sollten. Beides ist notwendig, um intelligente Antennensysteme evaluieren zu können. Solche umfassenden Modelle sind bisher nicht verfügbar und stellen deshalb das wesentliche Ziel dieser Dissertation dar

    Der 60 GHz Indoor-Funkkanal - Herausforderungen menschlicher Abschattung

    Get PDF
    Driven by the ever increasing capacity of storage devices and HD video streaming applications, there will be a strong demand for wireless multi-Gbps consumer applications soon. Due to its large available bandwidth and the high allowed transmit power, the unlicensed frequency range around 60 GHz is proving ideal for the realization of such systems. During the development process of 60 GHz multi-gigabit wireless systems, a detailed knowledge of the radio channel is essential. Taking into account research gaps, this dissertation makes a significant contribution to knowledge in the field of 60 GHz channel characterization. The focus is on human shadowing and its influence on the channel characteristics, which leads to a high and time-variant path loss. In order to provide realistic results, sophisticated radio channel models are required for the 60 GHz range. In particular, they should include information in the spatial domain at the receiver and the transmitter as well as take into account time-varying human shadowing. The angular information is necessary in this case to evaluate smart antenna systems. Such comprehensive models are not yet available and therefore represent the major outcome of this dissertation.Wegen seiner großen verfügbaren Bandbreite und der hohen erlaubten Sendeleistung erweist sich der unlizensierte Frequenzbereich um 60 GHz als hervorragend geeignet für die Realisierung drahtloser Multi-Gigabit-Kommunikationssysteme. Während des Entwicklungsprozesses solcher Systeme ist eine detaillierte Kenntnis des Funkkanals unerlässlich. Unter Berücksichtigung offener Fragestellungen leistet die vorliegende Dissertation einen wesentlichen Beitrag zum Wissensstand auf dem Gebiet der 60-GHz-Kanalcharakterisierung. Im Vordergrund steht dabei die Abschattung durch Personen, die bei Trägerfrequenzen um 60 GHz zu einer hohen und gleichzeitig zeitvarianten Funkfelddämpfung führt. Um realistische Ergebnisse zu liefern, sind im 60-GHz-Bereich komplexe Funkkanalmodelle erforderlich, die insbesondere Winkelinformationen am Sender und Empfänger enthalten und die zeitvariante Abschattung durch Personen berücksichtigen sollten. Beides ist notwendig, um intelligente Antennensysteme evaluieren zu können. Solche umfassenden Modelle sind bisher nicht verfügbar und stellen deshalb das wesentliche Ziel dieser Dissertation dar

    60 GHz Wireless Propagation Channels: Characterization, Modeling and Evaluation

    Get PDF
    To be able to connect wirelessly to the internet is nowadays a part of everyday life and the number of wireless devices accessing wireless networks worldwide are increasing rapidly. However, with the increasing number of wireless devices and applications and the amount available bandwidth, spectrum shortage is an issue. A promising way to increase the amount of available spectrum is to utilize frequency bands in the mm-wave range of 30-300 GHz that previously have not been used for typical consumer applications. The 60 GHz band has been pointed out as a good candidate for short range, high data rate communications, as the amount of available bandwidth is at least 5 GHz worldwide, with most countries having 7 GHz of bandwidth available in this band. This large bandwidth is expected to allow for wireless communication with bit rates up to 7 Gbit/s, which can be compared to the typical WLAN systems of today that typically provide bit rates up to 0.6 Gbit/s. However, the performance of any wireless system is highly dependent on the properties and characteristics of the wireless propagation channel. This thesis focuses on indoor short range wireless propagation channels in the 60 GHz band and contains a collection of papers that characterizes, models and evaluates different aspects that are directly related to the propagation channel properties. Paper I investigates the directional properties of the indoor 60 GHz wireless radio channel based on a set of indoor measurements in a conference room. In the paper, the signal pathways and propagation mechanisms for the strongest paths are identified. The results show that first and second order interactions account for the major contribution of the received power. The results also show that finer structures, such as ceiling lamps, can be significant interacting objects. Paper II presents a cluster-based double-directional channel model for 60 GHz indoor multiple-input multiple-output (MIMO) systems. This paper is a direct continuation of the results in paper I. The model supports arbitrary antenna elements and array configurations and is validated against measurement data. The validation shows that the channel model is able to efficiently reproduce the statistical properties of the measured channels. The presented channel model is also compared with the 60 GHz channel models developed for the industry standards IEEE802.15.3c and IEEE802.11ad. Paper III characterizes the effect of shadowing due to humans and other objects. Measurements of the shadowing gain for human legs, metallic sheets, as well as metallic and plastic cylinders are presented. It is shown that the shadowing gain of these objects are fairly similar and that the shadowing due to the metal cylinder can be determined based on the geometrical theory of diffraction. Next, the shadowing due to a water-filled human body phantom is compared with the shadowing due to real humans. The results show that the water-filled phantom has shadowing properties similar to those of humans and is therefore suitable for use in 60 GHz human body shadowing measurements. Paper IV presents a novel way of estimating the cluster decay and fading. Previously, the cluster decay has usually been determined by performing a simple linear regression, without considering the effects of the noise floor and cluster fading. The paper presents an estimation method which takes these effects into account and jointly estimates both the cluster decay and cluster fading. It is shown that this estimation method can greatly improve the estimated parameters. Paper V evaluates the capacity improvement capability of spatial multiplexing and beamforming techniques for 60 GHz systems in an indoor environment. In this paper, beamforming refers to conventional gain focusing in the direction of the strongest propagation path. The paper uses a capacity metric that only depends on the multi-path richness of the propagation channel and the antenna aperture size. In the paper, it is shown that, when the link budget is limited due to electrically small antennas and long Tx-Rx separation distances, beamforming approximates the capacity of spatial multiplexing. However, spatial multiplexing is a worthwhile option when Rx SNR is favorable and a higher peak data rate is required. Paper VI describes different methods for the clustering of wireless multi-path components. In the literature, the clustering method that is predominantly used is the K-means algorithm, or a power-weighted version of K-means, called K-power means. In this paper, we point out that K-means is a special case of a Gaussian mixture model (GMM). The paper presents a clustering method based on a GMM. This method is able to handle arbitrary cluster spreads in the different dimensions better than the K-means algorithm. A power-weighted version of the GMM is also presented. In addition to this, a mixture model based on asymmetric Laplace distributions is also presented, with and without power-weighting. Paper VII is based on channel measurements in a small and a large room, where the Tx and Rx arrays have dual polarized elements. Using these measurements, the cross-polarization ratio (XPR) of the multi-path components are characterized. This gives valuable information on how the MPCs are affected by the propagation channel. A statistical description of the XPR is also needed for the development of a propagation channel model that supports polarization. The paper also investigates the eigenvalue spreads for single and dual polarized elements. Furthermore, the measurements include LOS and NLOS measurement, where the NLOS scenarios include water-filled human presented in paper III. The results show that the capacity can be greatly improved if dual-polarized elements are used, and that the XPR values are in general higher compared to lower frequencies

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin
    • …
    corecore