12,618 research outputs found

    Millimeter-wave Wireless LAN and its Extension toward 5G Heterogeneous Networks

    Full text link
    Millimeter-wave (mmw) frequency bands, especially 60 GHz unlicensed band, are considered as a promising solution for gigabit short range wireless communication systems. IEEE standard 802.11ad, also known as WiGig, is standardized for the usage of the 60 GHz unlicensed band for wireless local area networks (WLANs). By using this mmw WLAN, multi-Gbps rate can be achieved to support bandwidth-intensive multimedia applications. Exhaustive search along with beamforming (BF) is usually used to overcome 60 GHz channel propagation loss and accomplish data transmissions in such mmw WLANs. Because of its short range transmission with a high susceptibility to path blocking, multiple number of mmw access points (APs) should be used to fully cover a typical target environment for future high capacity multi-Gbps WLANs. Therefore, coordination among mmw APs is highly needed to overcome packet collisions resulting from un-coordinated exhaustive search BF and to increase the total capacity of mmw WLANs. In this paper, we firstly give the current status of mmw WLANs with our developed WiGig AP prototype. Then, we highlight the great need for coordinated transmissions among mmw APs as a key enabler for future high capacity mmw WLANs. Two different types of coordinated mmw WLAN architecture are introduced. One is the distributed antenna type architecture to realize centralized coordination, while the other is an autonomous coordination with the assistance of legacy Wi-Fi signaling. Moreover, two heterogeneous network (HetNet) architectures are also introduced to efficiently extend the coordinated mmw WLANs to be used for future 5th Generation (5G) cellular networks.Comment: 18 pages, 24 figures, accepted, invited paper

    Robust Location-Aided Beam Alignment in Millimeter Wave Massive MIMO

    Full text link
    Location-aided beam alignment has been proposed recently as a potential approach for fast link establishment in millimeter wave (mmWave) massive MIMO (mMIMO) communications. However, due to mobility and other imperfections in the estimation process, the spatial information obtained at the base station (BS) and the user (UE) is likely to be noisy, degrading beam alignment performance. In this paper, we introduce a robust beam alignment framework in order to exhibit resilience with respect to this problem. We first recast beam alignment as a decentralized coordination problem where BS and UE seek coordination on the basis of correlated yet individual position information. We formulate the optimum beam alignment solution as the solution of a Bayesian team decision problem. We then propose a suite of algorithms to approach optimality with reduced complexity. The effectiveness of the robust beam alignment procedure, compared with classical designs, is then verified on simulation settings with varying location information accuracies.Comment: 24 pages, 7 figures. The short version of this paper has been accepted to IEEE Globecom 201
    • …
    corecore