551 research outputs found

    The Maunakea Spectroscopic Explorer Book 2018

    Full text link
    (Abridged) This is the Maunakea Spectroscopic Explorer 2018 book. It is intended as a concise reference guide to all aspects of the scientific and technical design of MSE, for the international astronomy and engineering communities, and related agencies. The current version is a status report of MSE's science goals and their practical implementation, following the System Conceptual Design Review, held in January 2018. MSE is a planned 10-m class, wide-field, optical and near-infrared facility, designed to enable transformative science, while filling a critical missing gap in the emerging international network of large-scale astronomical facilities. MSE is completely dedicated to multi-object spectroscopy of samples of between thousands and millions of astrophysical objects. It will lead the world in this arena, due to its unique design capabilities: it will boast a large (11.25 m) aperture and wide (1.52 sq. degree) field of view; it will have the capabilities to observe at a wide range of spectral resolutions, from R2500 to R40,000, with massive multiplexing (4332 spectra per exposure, with all spectral resolutions available at all times), and an on-target observing efficiency of more than 80%. MSE will unveil the composition and dynamics of the faint Universe and is designed to excel at precision studies of faint astrophysical phenomena. It will also provide critical follow-up for multi-wavelength imaging surveys, such as those of the Large Synoptic Survey Telescope, Gaia, Euclid, the Wide Field Infrared Survey Telescope, the Square Kilometre Array, and the Next Generation Very Large Array.Comment: 5 chapters, 160 pages, 107 figure

    Foreword to the Special Issue on European Conference on Optical Communications(ECOC 2015)

    Full text link
    [EN] ECOC is the leading forum in Europe for keeping up with the top research advances and scientific discoveries in devices, subsystems, systems and networks in the field of optical communications and related photonic technologies. With a global attendance and delegates coming from all over the five continents, ECOC provides a unique opportunity for networking and interaction that nobody interested in the field should miss. ECOC 2015 took place from September 27th to October 1st 2015 in Valencia, Spain.Bogoni, A.; Petropoulos, P.; Rafel, A.; Teixeira, A.; Fernandez-Palacios Gimenez, JP.; Muñoz Muñoz, P.; Killey, R.... (2016). Foreword to the Special Issue on European Conference on Optical Communications(ECOC 2015). Journal of Lightwave Technology. 34(5):1406-1410. doi:10.1109/JLT.2016.2528358S1406141034

    Compact, Engineered 2-Micron Coherent Doppler Wind Lidar Prototype for Field and Airborne Evaluation

    Get PDF
    The state-of-the-art 2-micron coherent Doppler wind lidar breadboard at NASA/LaRC will be engineered and compactly packaged consistent with future aircraft flights. The packaged transceiver will be integrated into a coherent Doppler wind lidar system test bed at LaRC. Atmospheric wind measurements will be made to validate the packaged technology. This will greatly advance the coherent part of the hybrid Doppler wind lidar solution to the need for global tropospheric wind measurements

    The Boston University Photonics Center annual report 2011-2012

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2011-2012 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This report summarizes activities of the Boston University Photonics Center during the period July 2011 through June 2012. These activities span the Center’s complementary missions in education, research, technology development, and commercialization. In 2010, the Photonics Center unveiled a five-year strategic plan as part of the University’s comprehensive review of centers and institutes. The Photonics Center continues to show progress on the Photonics Center strategic plan and is growing the Center’s position as an international leader in photonics research. For more information about the strategic plan, read the Photonics Center Strategic Plan section on page 11. In research, Photonics Center faculty published more than 100 journal papers spanning the field of photonics. A number of awards for outstanding achievement in education and research were presented to Photonics Center faculty members, including a Presidential Early Career Award for Scientists and Engineers (PECASE) for Professor Altug, the Boston University Peter Paul Professorship for Professor Han, and a Dean’s Catalyst Award for Professor Joshi. New external grant funding for the 2011-2012 fiscal year totaled $15.8M. For more information on our research activities, read the Research section on page 26. In technology development, the close of FY11 marked the end of the Photonics Center’s decade-long collaboration pipeline technology development with the Army Research Laboratory (ARL). The successful outcomes of that unique partnership include a compelling series of photonics technology prototypes aimed at force protection. Our direct collaboration with Army end users has enabled transformative advanced in sniper detection of bioterror agents, and nuclear threat detection. In the past year, the Photonics Center has expanded the scope of its unique photonic technology development program to include applications in the commercial healthcare sector. For more information on our technology development program and on specific projects, read the Technology Development section on page 52. In education, 17 Photonics Center graduate students received Ph.D. diplomas. Photonics Center faculty taught 29 photonics courses. The Center supported a Research Experiences for Teachers (RET) site in Biophotonic Sensors and Systems for 10 middle school and high school teachers. The Photonics Center sponsored the Herbert J. Berman “Future of Light” Prize at the University’s Science and Engineering Day. Professor Goldberg’s Boston Urban Fellows Project started its seventh year. For more on our education programs, read the Education section on page 64. In commercialization, the Business Innovation Center continues to operate at capacity. Its tenants include 11 technology companies with a majority having core business interests primarily in photonics and life sciences. It houses several companies founded by current and former BU faculty and students and provides students with an opportunity to assist, observe, and learn from start-up companies. For more information about Business Innovation Center activities, read the Business Innovation Center chapter in the Facilities and Equipment section on page 78

    Space electronics technology summary

    Get PDF
    An overview is given of current electronics R and D activities, potential future thrusts, and related NASA payoffs. Major increases in NASA mission return and significant concurrent reductions in mission cost appear possible through a focused, long range electronics technology program. The overview covers: guidance assessments, navigation and control, and sensing and data acquisition processing, storage, and transfer

    Fast Access Data Acquisition System

    Full text link

    Open-access silicon photonics: current status and emerging initiatives

    Get PDF
    Silicon photonics is widely acknowledged as a game-changing technology driven by the needs of datacom and telecom. Silicon photonics builds on highly capital-intensive manufacturing infrastructure, and mature open-access silicon photonics platforms are translating the technology from research fabs to industrial manufacturing levels. To meet the current market demands for silicon photonics manufacturing, a variety of open-access platforms is offered by CMOS pilot lines, R&D institutes, and commercial foundries. This paper presents an overview of existing and upcoming commercial and noncommercial open-access silicon photonics technology platforms. We also discuss the diversity in these open-access platforms and their key differentiators
    • …
    corecore