41 research outputs found

    Milano Retinex family

    Get PDF
    Several different implementations of the Retinex model have been derived from the original Land and McCann's paper. This paper aims at presenting the Milano-Retinex family, a collection of slightly different Retinex implementations, developed by the Department of Computer Science of Universit\ue1 degli Studi di Milano. One important difference is in their goals: while the original Retinex aims at modeling vision, the Milano-Retinex family is mainly applied as an image enhancer, mimicking some mechanisms of the human vision system

    Using pixel intensity as a self- regulating threshold for deterministic image sampling in Milano Retinex : the T-Rex algorithm

    Get PDF
    Milano Retinexes are spatial color algorithms, part of the Retinex family, usually employed for image enhancement. They modify the color of each pixel taking into account the surrounding colors and their position, catching in this way the local spatial color distribution relevant to image enhancement. We present T-Rex (from the words threshold and Retinex), an implementation of Milano Retinex, whose main novelty is the use of the pixel intensity as a self-regulating threshold to deterministically sample local color information. The experiments, carried out on real-world pictures, show that T-Rex image enhancement performance are in line with those of the Milano Retinex family: T-Rex increases the brightness, the contrast, and the flatness of the channel distributions of the input image, making more intelligible the content of pictures acquired under difficult light conditions

    Gradient attenuation as an emergent property of reset-based Retinex models

    Get PDF
    The Retinex image filtering algorithms have been inspired by experimental findings on the behavior of the Human Vision System. They are known to locally adjust image color and contrast by preserving edges and attenuating gradients. In a reference formulation of the algorithm by Land and McCann, edge preservation and gradient attenuation are granted by two ad-hoc mechanisms: called respectively reset (the distinctive feature of all the Retinex algorithms) and thresholding. A somehow unanticipated finding is that gradient attenuation is also observed with algorithm variants that do not include the latter mechanism, which was explicitly devised to implement gradient attenuation. In this work, we provide an analytic demonstration of the capability of Retinex models to attenuate gradients using only the "reset" mechanism, combined with the local character of the mutual pixel influences. We show that this capability is an emergent property of all the reset-based Retinex models

    A cockpit of multiple measures for assessing film restoration quality

    Get PDF
    In machine vision, the idea of expressing the quality of a films by a single value is very popular. Usually this value is computed by processing a set of image features with the aim of resembling as much as pos- sible a kind of human judgment of the film quality. Since human quality assessment is a complex mech- anism involving many different perceptual aspects, we believe that such approach may scarcely provide a comprehensive analysis. Especially in the field of digital movie restoration, a single score can hardly provide reliable information about the effects of the various restoring operations. For this reason we in- troduce an alternative approach, where a set of measures, describing over time basic global and local visual properties of the film frames, is computed in an unsupervised way and delivered to expert evalu- ators for checking the restoration pipeline and results. The proposed framework can be viewed as a car or airplane cockpit , whose parameters (i.e. the computed measures) are necessary to control the machine status and performance. This cockpit, which is publicly available online, would like to support the digital restoration process and its assessment

    Review and Comparison of Random Spray Retinex and of its variants STRESS and QBRIX

    Get PDF
    In this paper, we review and compare three spatial color algorithms of the Milano Retinex family: Random Spray Retinex (RSR) and its subsequent variants STRESS and QBRIX. These algorithms process the colors of any input image in line with the principles of the Retinex theory, introduced about 50 years ago by Land and McCann to explain how humans see colors. According to this theory, RSR, STRESS and QBRIX re-scale independently the color intensities of each pixel by a quantity, named local reference white, which depends on the spatial arrangement of the colors in the pixel surround. The output is a new color enhanced image that generally has a higher brightness and more visible details than the input one. RSR, STRESS and QBRIX adopt different models of spatial arrangement and implement different equations for the computation of the local reference white, so that they produce different enhanced images. We propose a comparative analysis of their performance based on numerical measures of the image brightness, details and dynamic range. In order to enable result repeatability and further comparisons, we use a set of images publicly available on the net

    GRASS: A Gradient-Based Random Sampling Scheme for Milano Retinex

    Get PDF
    Retinex is an early and famous theory attempting to estimate the human color sensation derived from an observed scene. When applied to a digital image, the original implementation of retinex estimates the color sensation by modifying the pixels channel intensities with respect to a local reference white, selected from a set of random paths. The spatial search of the local reference white influences the final estimation. The recent algorithm energy-driven termite retinex (ETR), as well as its predecessor termite retinex, has introduced a new path-based image aware sampling scheme, where the paths depend on local visual properties of the input image. Precisely, the ETR paths transit over pixels with high gradient magnitude that have been proved to be important for the formation of color sensation. Such a sampling method enables the visit of image portions effectively relevant to the estimation of the color sensation, while it reduces the analysis of pixels with less essential and/or redundant data, i.e., the flat image regions. While the ETR sampling scheme is very efficacious in detecting image pixels salient for the color sensation, its computational complexity can be a limit. In this paper, we present a novel Gradient-based RAndom Sampling Scheme that inherits from ETR the image aware sampling principles, but has a lower computational complexity, while similar performance. Moreover, the new sampling scheme can be interpreted both as a path-based scanning and a 2D sampling

    From samples to populations in retinex models

    Get PDF
    Some spatial color algorithms, such as Brownian Milano retinex (MI-retinex) and random spray retinex (RSR), are based on sampling. In Brownian MI-retinex, memoryless random walks (MRWs) explore the neighborhood of a pixel and are then used to compute its output. Considering the relative redundancy and inefficiency of MRW exploration, the algorithm RSR replaced the walks by samples of points (the sprays). Recent works point to the fact that a mapping from the sampling formulation to the probabilistic formulation of the corresponding sampling process can offer useful insights into the models, at the same time featuring intrinsically noise-free outputs. The paper continues the development of this concept and shows that the population-based versions of RSR and Brownian MI-retinex can be used to obtain analytical expressions for the outputs of some test images. The comparison of the two analytic expressions from RSR and from Brownian MI-retinex demonstrates not only that the two outputs are, in general, different but also that they depend, in a qualitatively different way, upon the features of the image

    Audio dynamics automatic equalization inspired by visual perception

    Get PDF
    AbstractThis paper explores the behavior of an algorithm called Audio Dynamics Automatic Equalization (ADAE). This algorithm has been inspired by research carried out in the context of image restoration: it is the adaptation of a contrast and color unsupervised equalizer for images, called Automatic Color Equalization (ACE), into the audio domain. Beside testing if the domain shift from image to audio processing can bring some interesting result, this work also investigates if ADAE behaves like already-known technologies for audio manipulation and restoration. To this end, after a description of the original and the derived algorithms, quantitative test are carried out using typical analyses from the Sound and Music Computing literature, such as frequency response, transfer function, and harmonic distortion. Finally, the paper discusses how the algorithm introduces dynamic range adjustments and non-linear distortions, thus behaving like a dynamics processor, a harmonic exciter, and a waveshaper
    corecore