4,407 research outputs found

    An overview of Mirjam and WeaveC

    Get PDF
    In this chapter, we elaborate on the design of an industrial-strength aspectoriented programming language and weaver for large-scale software development. First, we present an analysis on the requirements of a general purpose aspect-oriented language that can handle crosscutting concerns in ASML software. We also outline a strategy on working with aspects in large-scale software development processes. In our design, we both re-use existing aspect-oriented language abstractions and propose new ones to address the issues that we identified in our analysis. The quality of the code ensured by the realized language and weaver has a positive impact both on maintenance effort and lead-time in the first line software development process. As evidence, we present a short evaluation of the language and weaver as applied today in the software development process of ASML

    Power Systems Monitoring and Control using Telecom Network Management Standards

    Get PDF
    Historically, different solutions have been developed for power systems control and telecommunications network management environments. The former was characterized by proprietary solutions, while the latter has been involved for years in a strong standardization process guided by criteria of openness. Today, power systems control standardization is in progress, but it is at an early stage compared to the telecommunications management area, especially in terms of information modeling. Today, control equipment tends to exhibit more computational power, and communication lines have increased their performance. These trends hint at some conceptual convergence between power systems and telecommunications networks from a management perspective. This convergence leads us to suggest the application of well-established telecommunications management standards for power systems control. This paper shows that this is a real medium-to-long term possibility

    Advanced manned space flight simulation and training: An investigation of simulation host computer system concepts

    Get PDF
    The findings of a preliminary investigation by Southwest Research Institute (SwRI) in simulation host computer concepts is presented. It is designed to aid NASA in evaluating simulation technologies for use in spaceflight training. The focus of the investigation is on the next generation of space simulation systems that will be utilized in training personnel for Space Station Freedom operations. SwRI concludes that NASA should pursue a distributed simulation host computer system architecture for the Space Station Training Facility (SSTF) rather than a centralized mainframe based arrangement. A distributed system offers many advantages and is seen by SwRI as the only architecture that will allow NASA to achieve established functional goals and operational objectives over the life of the Space Station Freedom program. Several distributed, parallel computing systems are available today that offer real-time capabilities for time critical, man-in-the-loop simulation. These systems are flexible in terms of connectivity and configurability, and are easily scaled to meet increasing demands for more computing power

    The Cyber Physical Implementation of Cloud Manufactuirng Monitoring Systems

    Get PDF
    AbstractThe rise of the industrial internet has been envisaged as a key catalyst for creating the intelligent manufacturing plant of the future through enabling open data distribution for cloud manufacturing. The context supporting these systems has been defined by Service Oriented Architectures (SOA) that facilitate data resource and computational functions as services available on a network. SOA has been at the forefront EU research over the past decade and several industrially implemented SOA technologies exist on the manufacturing floor. However it is still unclear whether SOA can meet the multi-layered requirements present within state-of-the-art manufacturing Cyber Physical Systems (CPS). The focus of this research is to identify the capability of SOA to be implemented at different execution layers present in a manufacturing CPS. The state-of-the-art for manufacturing CPS is represented by the ISA-95 standard and is correlated with different temporal analysis scales, and manufacturing computational requirements. Manufacturing computational requirements are identified through a review of open and closed loop machine control orientations, and continuous and discrete control methods. Finally the Acquire Recognise Cluster (ARC) SOA for reconfigurable manufacturing process monitoring systems is reviewed, to provide a topological view of data flow within a field level manufacturing SOA

    Multi-agent systems for power engineering applications - part 1 : Concepts, approaches and technical challenges

    Get PDF
    This is the first part of a 2-part paper that has arisen from the work of the IEEE Power Engineering Society's Multi-Agent Systems (MAS) Working Group. Part 1 of the paper examines the potential value of MAS technology to the power industry. In terms of contribution, it describes fundamental concepts and approaches within the field of multi-agent systems that are appropriate to power engineering applications. As well as presenting a comprehensive review of the meaningful power engineering applications for which MAS are being investigated, it also defines the technical issues which must be addressed in order to accelerate and facilitate the uptake of the technology within the power and energy sector. Part 2 of the paper explores the decisions inherent in engineering multi-agent systems for applications in the power and energy sector and offers guidance and recommendations on how MAS can be designed and implemented

    Future Directions of Internet-based Control Systems

    Get PDF
    Recent advances in object-oriented, client/server technologies, and the Internet are supplying the technology enablers needed to provide a uniform information architecture that can be used to build software architecture allowing the inter-operation and integration of a wide set of diverse applications. Moreover the emerging standards start playing a significant role in the shaping of automation architectures in enterprises. The inclusion within a classical control system of Internet-related technologies and open distributed application concepts would give the present system compliance with current and future technological trends. At the present time, in the field of the industrial automation, real-time embedded control systems more and more need Internet connectivity for operations of remote plant administration, training, and supervisory activities. In this paper the state of the art in embedded control systems is presented within the field of industrial automation applications, and the technological scenario is discussed, followed by the trend for the evolution in process control systems. Guidelines for the design of innovative, thus competitive control systems are suggested. A case study is presented, outcome of an EC project in which one of the authors is involved, where a remote maintenance system is realized

    JEERP: Energy Aware Enterprise Resource Planning

    Get PDF
    Ever increasing energy costs, and saving requirements, especially in enterprise contexts, are pushing the limits of Enterprise Resource Planning to better account energy, with component-level asset granularity. Using an application-oriented approach we discuss the different aspects involved in designing Energy Aware ERPs and we show a prototypical open source implementation based on the Dog Domotic Gateway and the Oratio ER
    corecore