302 research outputs found

    Integrated ZigBee RFID sensor networks for resource tracking and monitoring in logistics management

    Get PDF
    The Radio Frequency Identification (RFID), which includes passive and active systems and is the hottest Auto-ID technology nowadays, and the wireless sensor network (WSN), which is one of the focusing topics on monitoring and control, are two fast-growing technologies that have shown great potential in future logistics management applications. However, an information system for logistics applications is always expected to answer four questions: Who, What, When and Where (4Ws), and neither of the two technologies is able to provide complete information for all of them. WSN aims to provide environment monitoring and control regarded as When and What , while RFID focuses on automatic identification of various objects and provides Who (ID). Most people usually think RFID can provide Where at all the time. But what normal passive RFID does is to tell us where an object was the last time it went through a reader, and normal active RFID only tells whether an object is presenting on site. This could sometimes be insufficient for certain applications that require more accurate location awareness, for which a system with real-time localization (RTLS), which is an extended concept of RFID, will be necessary to answer Where constantly. As WSN and various RFID technologies provide information for different but complementary parts of the 4Ws, a hybrid system that gives a complete answer by combining all of them could be promising in future logistics management applications. Unfortunately, in the last decade those technologies have been emerging and developing independently, with little research been done in how they could be integrated. This thesis aims to develop a framework for the network level architecture design of such hybrid system for on-site resource management applications in logistics centres. The various architectures proposed in this thesis are designed to address different levels of requirements in the hierarchy of needs, from single integration to hybrid system with real-time localization. The contribution of this thesis consists of six parts. Firstly, two new concepts, Reader as a sensor and Tag as a sensor , which lead to RAS and TAS architectures respectively, for single integrations of RFID and WSN in various scenarios with existing systems; Secondly, a integrated ZigBee RFID Sensor Network Architecture for hybrid integration; Thirdly, a connectionless inventory tracking architecture (CITA) and its battery consumption model adding location awareness for inventory tracking in Hybrid ZigBee RFID Sensor Networks; Fourthly, a connectionless stochastic reference beacon architecture (COSBA) adding location awareness for high mobility target tracking in Hybrid ZigBee RFID Sensor Networks; Fifthly, improving connectionless stochastic beacon transmission performance with two proposed beacon transmission models, the Fully Stochastic Reference Beacon (FSRB) model and the Time Slot Based Stochastic Reference Beacon (TSSRB) model; Sixthly, case study of the proposed frameworks in Humanitarian Logistics Centres (HLCs). The research in this thesis is based on ZigBee/IEEE802.15.4, which is currently the most widely used WSN technology. The proposed architectures are demonstrated through hardware implementation and lab tests, as well as mathematic derivation and Matlab simulations for their corresponding performance models. All the tests and simulations of my designs have verified feasibility and features of our designs compared with the traditional systems

    System for acquisition, processing and presentation of energy consumption

    Get PDF
    Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores (Major Telecomunicações). Faculdade de Engenharia. Universidade do Porto. 200

    CPA\u27s guide to wireless technology and networking

    Get PDF
    https://egrove.olemiss.edu/aicpa_guides/1303/thumbnail.jp

    Internet of Things From Hype to Reality

    Get PDF
    The Internet of Things (IoT) has gained significant mindshare, let alone attention, in academia and the industry especially over the past few years. The reasons behind this interest are the potential capabilities that IoT promises to offer. On the personal level, it paints a picture of a future world where all the things in our ambient environment are connected to the Internet and seamlessly communicate with each other to operate intelligently. The ultimate goal is to enable objects around us to efficiently sense our surroundings, inexpensively communicate, and ultimately create a better environment for us: one where everyday objects act based on what we need and like without explicit instructions

    FPGA based reconfigurable body area network using Nios II and uClinux

    Get PDF
    This research is focused on identifying an appropriate design for a reconfigurable Body Area Network (BAN). In order to investigate the benefits and drawbacks of the proposed design, a BAN system prototype was built. This system consists of two distinct node types: a slave node and a master node. These nodes communicate using ZigBee radio transceivers. The microcontroller-based slave node acquires sensor data and transmits digitized samples to the master node. The master node is FPGA-based and runs uClinux on a soft-core microcontroller. The purpose of the master node is to receive, process and store digitized sensor data. In order to verify the operation of the BAN system prototype and demonstrate reconfigurability, a specific application was required. Pattern recognition in electrocardiogram (ECG) data was the application used in this work and the MIT-BIH Arrhythmia Database was used as the known data source for verification. A custom test platform was designed and built for the purpose of injecting data from the MIT-BIH Arrhythmia Database into the BAN system. The BAN system designed and built in this work demonstrates the ability to record raw ECG data, detect R-peaks, calculate and record R-R intervals, detect premature ventricular and atrial contractions. As this thesis will identify, many aspects of this BAN system were designed to be highly reconfigurable allowing it to be used for a wide range of BAN applications, in addition to pattern recognition of ECG data

    Demystifying Internet of Things Security

    Get PDF
    Break down the misconceptions of the Internet of Things by examining the different security building blocks available in Intel Architecture (IA) based IoT platforms. This open access book reviews the threat pyramid, secure boot, chain of trust, and the SW stack leading up to defense-in-depth. The IoT presents unique challenges in implementing security and Intel has both CPU and Isolated Security Engine capabilities to simplify it. This book explores the challenges to secure these devices to make them immune to different threats originating from within and outside the network. The requirements and robustness rules to protect the assets vary greatly and there is no single blanket solution approach to implement security. Demystifying Internet of Things Security provides clarity to industry professionals and provides and overview of different security solutions What You'll Learn Secure devices, immunizing them against different threats originating from inside and outside the network Gather an overview of the different security building blocks available in Intel Architecture (IA) based IoT platforms Understand the threat pyramid, secure boot, chain of trust, and the software stack leading up to defense-in-depth Who This Book Is For Strategists, developers, architects, and managers in the embedded and Internet of Things (IoT) space trying to understand and implement the security in the IoT devices/platforms

    Embedded System for Construction Material Tracking Using Combination of Radio Frequency and Ultrasound Signal

    Get PDF
    This study created a framework for integrating the latest innovations in wireless sensor network that automate tracking and monitoring construction assets, e.g. equipment, materials, and labor in construction sites. This research constitutes one of the few studies to incorporate emerging information and sensor network technologies with the construction industry, which has been slow to migrate away from legacy processes. The presented research works introduce a new prototype framework of an automated tracking system that will address the needed shift from the time-and labor-intensive legacy systems to sensor- and network-based collaboration and communication systems for construction processes. Software and hardware architecture for the new tracking system was developed using the combination of ultrasound and radio signals. By embedding the external ultrasound device with a MICAZ platform, enhancements to networking flexibility and wireless communication was observed over the previous technologies used in the construction material tracking systems. Feasibility study and testbed experiment on the position estimation were implemented to verify the localization algorithm presented in this dissertation. Cost benefit analysis based on quantitative approach implied that the presented framework can save the implementation cost of material tracking by up to 64 percent in a typical construction project. In addition to cost savings, the use of sensor-based tracking system can provide the intangible, comprehensive benefits in communication, labor utilization, document management, and resource management. It is hoped that the present work will describe a system that can effectively be used in a range of applications for tracking and monitoring purposes and will present a clear path that engineers can take to use existing wireless sensor technology in their particular applications. The cost of such hardware will decrease rapidly, thereby permitting large numbers of application scenarios to be possible in many construction sites with improved energy consumption, hardware performance, durability, and safety

    SUTMS - Unified Threat Management Framework for Home Networks

    Get PDF
    Home networks were initially designed for web browsing and non-business critical applications. As infrastructure improved, internet broadband costs decreased, and home internet usage transferred to e-commerce and business-critical applications. Today’s home computers host personnel identifiable information and financial data and act as a bridge to corporate networks via remote access technologies like VPN. The expansion of remote work and the transition to cloud computing have broadened the attack surface for potential threats. Home networks have become the extension of critical networks and services, hackers can get access to corporate data by compromising devices attacked to broad- band routers. All these challenges depict the importance of home-based Unified Threat Management (UTM) systems. There is a need of unified threat management framework that is developed specifically for home and small networks to address emerging security challenges. In this research, the proposed Smart Unified Threat Management (SUTMS) framework serves as a comprehensive solution for implementing home network security, incorporating firewall, anti-bot, intrusion detection, and anomaly detection engines into a unified system. SUTMS is able to provide 99.99% accuracy with 56.83% memory improvements. IPS stands out as the most resource-intensive UTM service, SUTMS successfully reduces the performance overhead of IDS by integrating it with the flow detection mod- ule. The artifact employs flow analysis to identify network anomalies and categorizes encrypted traffic according to its abnormalities. SUTMS can be scaled by introducing optional functions, i.e., routing and smart logging (utilizing Apriori algorithms). The research also tackles one of the limitations identified by SUTMS through the introduction of a second artifact called Secure Centralized Management System (SCMS). SCMS is a lightweight asset management platform with built-in security intelligence that can seamlessly integrate with a cloud for real-time updates
    • …
    corecore