154 research outputs found

    Mobile Computing in Digital Ecosystems: Design Issues and Challenges

    Full text link
    In this paper we argue that the set of wireless, mobile devices (e.g., portable telephones, tablet PCs, GPS navigators, media players) commonly used by human users enables the construction of what we term a digital ecosystem, i.e., an ecosystem constructed out of so-called digital organisms (see below), that can foster the development of novel distributed services. In this context, a human user equipped with his/her own mobile devices, can be though of as a digital organism (DO), a subsystem characterized by a set of peculiar features and resources it can offer to the rest of the ecosystem for use from its peer DOs. The internal organization of the DO must address issues of management of its own resources, including power consumption. Inside the DO and among DOs, peer-to-peer interaction mechanisms can be conveniently deployed to favor resource sharing and data dissemination. Throughout this paper, we show that most of the solutions and technologies needed to construct a digital ecosystem are already available. What is still missing is a framework (i.e., mechanisms, protocols, services) that can support effectively the integration and cooperation of these technologies. In addition, in the following we show that that framework can be implemented as a middleware subsystem that enables novel and ubiquitous forms of computation and communication. Finally, in order to illustrate the effectiveness of our approach, we introduce some experimental results we have obtained from preliminary implementations of (parts of) that subsystem.Comment: Proceedings of the 7th International wireless Communications and Mobile Computing conference (IWCMC-2011), Emergency Management: Communication and Computing Platforms Worksho

    Object Technology for Ambient Intelligence : Workshop Reader for OT4Aml at ECOOP 2007

    Get PDF
    This reader comprises the submissions to the third workshop on object-technology for Ambient Intelligence and Pervasive Computing held at ECOOP 2007

    Compelling Interactions

    Get PDF
    Architecture can unite cultural diversity through means of communication via spatial orientation. Spatial and sensory experience are key components in developing spaces that can compel interaction. By fusing communication and architecture, a complex international airport terminal can transform into a structure that supports the notion of communication and interaction between people

    Research of the internet of things business models in Portugal

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Information Systems and Technologies ManagementThe Internet of Things is a concept that is revolutionizing how “things” and people are interconnected nowadays. The impact it is going to create in the economy and the society is going to be immense and it will change the manner in which we do our personal and corporative daily tasks. This concept was created several years in the past when the first communication machine-to-machine was achieved and with time, the technology has been evolving to what we know as the “Internet of Things”. It is based on networks among sensors, things and people. As the IoT is so diverse, there is not a specific architecture, but several. Depends on the objective of the clients or developers, what do they want to improve or achieve by developing or implementing this technology. The main objectives are making processes as efficient as possible and gather data about several parameters such as, temperature, traffic, speed, product usage, health, machine functioning, among several others. This type of information and technology is very important for entities as it helps them positioning in the market, improve their strategy, differentiate from the competition, create more value, impact for the clients and in the decision making process. For the citizens, the IoT will help them to interact better with public services and increase their life quality, for instance. This dissertation attempts to understand what the IoT is, its architectures and the advantages and disadvantages that exist throughout its implementation. It was also investigated the impact the Internet of Things has in entities, its business models and the entities business models as well in order to understand if they remain the same or go through some changes after introducing these technologies in the entity, and the overall market and economic impact. The method used to obtain these results is based in interviews conducted to several enterprises with experience and direct contact with the IoT

    Adaptive Middleware for Resource-Constrained Mobile Ad Hoc and Wireless Sensor Networks

    Get PDF
    Mobile ad hoc networks: MANETs) and wireless sensor networks: WSNs) are two recently-developed technologies that uniquely function without fixed infrastructure support, and sense at scales, resolutions, and durations previously not possible. While both offer great potential in many applications, developing software for these types of networks is extremely difficult, preventing their wide-spread use. Three primary challenges are: 1) the high level of dynamics within the network in terms of changing wireless links and node hardware configurations,: 2) the wide variety of hardware present in these networks, and: 3) the extremely limited computational and energy resources available. Until now, the burden of handling these issues was put on the software application developer. This dissertation presents three novel programming models and middleware systems that address these challenges: Limone, Agilla, and Servilla. Limone reliably handles high levels of dynamics within MANETs. It does this through lightweight coordination primitives that make minimal assumptions about network connectivity. Agilla enables self-adaptive WSN applications via the integration of mobile agent and tuple space programming models, which is critical given the continuously changing network. It is the first system to successfully demonstrate the feasibility of using mobile agents and tuple spaces within WSNs. Servilla addresses the challenges that arise from WSN hardware heterogeneity using principles of Service-Oriented Computing: SOC). It is the first system to successfully implement the entire SOC model within WSNs and uniquely tailors it to the WSN domain by making it energy-aware and adaptive. The efficacies of the above three systems are demonstrated through implementation, micro-benchmarks, and the evaluation of several real-world applications including Universal Remote, Fire Detection and Tracking, Structural Health Monitoring, and Medical Patient Monitoring

    Adapting mobile systems using logical mobility primitives

    Get PDF
    Mobile computing devices, such as personal digital assistants and mobile phones, are becoming increasingly popular, smaller, more capable and even fashionable personal items. Combined with the recent advent of wireless networking techniques, users are equipped with mobile devices of significant computational abilities, which are able to wirelessly access information by dynamically connecting to many different networks. Despite the ubiquity of mobile devices, mobile systems are built using monolithic architectures, use a small set of predefined interaction paradigms and do not exploit or adapt to the dynamicity of their local or remote context. Applications deployed on mobile devices face considerable challenges posed by their changing surroundings. One of the main peculiarities of mobile devices is heterogeneity, which may occur in software, hardware and network protocols. Mobile systems may carry a large number of different applications, use different operating systems and middleware and, often, have more than one network interface. A further challenge is their considerable variation in the computational resources available, such as battery power, CPU speed, network bandwidth and volatile and persistent memory. Moreover, mobile computing systems are highly dynamic systems, in terms of their surroundings, implying that the requirements for applications deployed on a mobile device are a moving target. Changes in the requirements (such as integration with a new service) may require changes to the application. Consequently, these changes may mean that the application behaviour needs to adapt. This thesis argues that the potential of the ubiquity of mobile devices cannot be realised using static and monolithic architectures, as mobile systems need to be able to adapt to accommodate changes to their environment. It investigates the use of three technologies to offer adaptation to mobile devices: Logical mobility techniques, component systems and middleware technologies. More specifically, this thesis presents the SATIN (System Adaptation Targeting Integrated Networks) component metamodel, a lightweight local component metamodel that offers the flexible use of logical mobility primitives. The metamodel is instantiated to build the SATIN middleware system, a component-based mobile computing middleware that uses the mobility primitives exported by the metamodel to reconfigure itself and applications running on top of it. The suitability of SATIN for the creation of adaptable mobile systems is demonstrated, by using it to implement and evaluate a number of applications showing different aspects of adaptation. Moreover, existing projects are reengineered to run as SATIN components, showing the flexibility of the approach and the advantages gained over the originals

    Augmented Driver Behavior Models for High-Fidelity Simulation Study of Crash Detection Algorithms

    Full text link
    Developing safety and efficiency applications for Connected and Automated Vehicles (CAVs) require a great deal of testing and evaluation. The need for the operation of these systems in critical and dangerous situations makes the burden of their evaluation very costly, possibly dangerous, and time-consuming. As an alternative, researchers attempt to study and evaluate their algorithms and designs using simulation platforms. Modeling the behavior of drivers or human operators in CAVs or other vehicles interacting with them is one of the main challenges of such simulations. While developing a perfect model for human behavior is a challenging task and an open problem, we present a significant augmentation of the current models used in simulators for driver behavior. In this paper, we present a simulation platform for a hybrid transportation system that includes both human-driven and automated vehicles. In addition, we decompose the human driving task and offer a modular approach to simulating a large-scale traffic scenario, allowing for a thorough investigation of automated and active safety systems. Such representation through Interconnected modules offers a human-interpretable system that can be tuned to represent different classes of drivers. Additionally, we analyze a large driving dataset to extract expressive parameters that would best describe different driving characteristics. Finally, we recreate a similarly dense traffic scenario within our simulator and conduct a thorough analysis of various human-specific and system-specific factors, studying their effect on traffic network performance and safety

    Emerging research directions in computer science : contributions from the young informatics faculty in Karlsruhe

    Get PDF
    In order to build better human-friendly human-computer interfaces, such interfaces need to be enabled with capabilities to perceive the user, his location, identity, activities and in particular his interaction with others and the machine. Only with these perception capabilities can smart systems ( for example human-friendly robots or smart environments) become posssible. In my research I\u27m thus focusing on the development of novel techniques for the visual perception of humans and their activities, in order to facilitate perceptive multimodal interfaces, humanoid robots and smart environments. My work includes research on person tracking, person identication, recognition of pointing gestures, estimation of head orientation and focus of attention, as well as audio-visual scene and activity analysis. Application areas are humanfriendly humanoid robots, smart environments, content-based image and video analysis, as well as safety- and security-related applications. This article gives a brief overview of my ongoing research activities in these areas
    corecore