91 research outputs found

    High precision optoacoustic neural modulation

    Full text link
    Manipulation of brain circuits is a critical to understanding how brain controls behaviors under normal physiological conditions and how its dysfunction causes diseases. Ultrasound stimulation is an emerging neuromodulation modality that allows activation of neurons with acoustic waves. However, the piezo based transcranial ultrasound stimulation offers poor spatial resolution, which hinders the understanding of its mechanism as well as application in region specific activation in small animals. To address this limitation, we developed a series of neuromodulation techniques utilizing the photon to sound conversion capability offered by the optoacoustic effect. In chapter 2, we developed a fiber based optoacoustic converter th-at allows neural stimulation at submillimeter spatial precision both in vitro and in vivo. In chapter 3, the spatial resolution was further improved by tapered fiber optoacoustic emitter to achieve stimulation of single neurons and even subcellular structures in culture. In chapter 4, we developed photoacoustic nanoparticle based neural stimulation that allows direct activation of neurons through optoacoustic waves generated by nanoparticles bonded to the neuronal membrane. Finally, in chapter 5, in an effort to improve penetration depth, a split ring resonator based microwave neuromodulation was developed that allows wireless stimulation and inhibition of neurons with subwavelength spatial resolution. Together, these methods offer an enabling platform with opportunities to understand the mechanism of acoustic neural stimulation as well as potential for treatment of neurological diseases with high precision neuromodulation

    Index to 1986 NASA Tech Briefs, volume 11, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1986 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Comparative analysis of energy transfer mechanisms for neural implants

    Get PDF
    As neural implant technologies advance rapidly, a nuanced understanding of their powering mechanisms becomes indispensable, especially given the long-term biocompatibility risks like oxidative stress and inflammation, which can be aggravated by recurrent surgeries, including battery replacements. This review delves into a comprehensive analysis, starting with biocompatibility considerations for both energy storage units and transfer methods. The review focuses on four main mechanisms for powering neural implants: Electromagnetic, Acoustic, Optical, and Direct Connection to the Body. Among these, Electromagnetic Methods include techniques such as Near-Field Communication (RF). Acoustic methods using high-frequency ultrasound offer advantages in power transmission efficiency and multi-node interrogation capabilities. Optical methods, although still in early development, show promising energy transmission efficiencies using Near-Infrared (NIR) light while avoiding electromagnetic interference. Direct connections, while efficient, pose substantial safety risks, including infection and micromotion disturbances within neural tissue. The review employs key metrics such as specific absorption rate (SAR) and energy transfer efficiency for a nuanced evaluation of these methods. It also discusses recent innovations like the Sectored-Multi Ring Ultrasonic Transducer (S-MRUT), Stentrode, and Neural Dust. Ultimately, this review aims to help researchers, clinicians, and engineers better understand the challenges of and potentially create new solutions for powering neural implants

    Traffic flow wide-area surveillance system definition

    Full text link

    Design of programmable matter

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2008.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (leaves 115-119).Programmable matter is a proposed digital material having computation, sensing, actuation, and display as continuous properties active over its whole extent. Programmable matter would have many exciting applications, like paintable displays, shape-changing robots and tools, rapid prototyping, and sculpture-based haptic interfaces. Programmable matter would be composed of millimeter-scale autonomous microsystem particles, without internal moving parts, bound by electromagnetic forces or an adhesive binder. Particles can dissipate 10 mW heat, and store 6 J energy in an internal zinc-air battery. Photovoltaic cells provide 300 [mu]W outdoors and 3.0 [mu]W indoors. Painted systems can store battery reactants in the paint binder; 6 J / mm3 can be stored, and diffusion is fast enough to transport reactants to the particles. Capacitive power transfer is an efficient method to transfer power to sparse, randomly placed particles. Power from capacitive transfer is proportional to VDD 2: 100[mu]W at 3.3V and 12 mW at 35V. Inter-particle communication is possible via optical, near-field, and far-field electromagnetic systems. Optical systems allow communication with low area (sub-mm) particles, and 24 pJ/bit. Near-field electromagnetic gives precisely controlled neighborhoods, localization capability, and 37 pJ/bit. Far-field radio communication between widely spaced particles may be possible at 60 GHz; antennas that fit inside 1 mm3 exist; complete transceivers do not. A 32-bit CPU uses less than 0.26 mm2 die area, 256K x 8 SRAM uses 1.1 mm2, and 256K x 8 FLASH uses 0.32 mm2. Direct-drive electric and magnetic field systems allow actuation without moving parts inside the particles. Magnetic surface-drive motors designed for operation without bearings are not power-efficient, and parasitic interactions between permanent magnets may limit their usefulness at millimeter particle dimensions. Electrostatic surface-drive motors are power-efficient, but practical only at particle dimensions below a few millimeters. We constructed a prototype paintable display; a distributed PostScript rendering system with 1000 randomly-placed 3.4 cm nodes, each with a CPU, IR communications, and LED. The system is used to render the letter "A." We present a design, not yet constructed, for a literal paintable display, with 1.0 mm rendering particles, each with a microprocessor and memory, and 110 [mu]m display particles, with tri-color LED's and simpler circuitry. Storage of zinc-air battery reactants in the paint binder would provide an 8 hour battery life, and capacitive power distribution would allow continuous operation. We constructed a prototype sliding-cube modular robot, with 3.4 cm nodes. The system uses magnetic surface-drive actuation. We demonstrate horizontal lattice-unit translation. We describe a design, not yet constructed, for a sliding-cube modular robot with 2 mm nodes. The cubes use standard-process CMOS IC's, inserted into a cubic space frame and wire-bonded together. Arrays of passivated electrodes, 1 [mu]m from the surface of the cubes, are used for electrostatic surface-drive actuation, zero-power latching, power transfer, localization, and communication. The design allows actuation from any contacting position. Energy is stored in a standard SMT capacitor inside each node, which is recharged by power transfer through chains of contacting nodes.by Ara N. Knaian.S.M

    Pyroelectric detector signal measurement and processing

    Get PDF
    Práce se zabývá fyzikálními vlastnostmi pyroelektrických senzorů a jejich praktickým využitím. Součástí práce je návrh a realizace měřící aparatury, jež bude využita k měření fyzikálních vlastností senzorů. Pro měření signálů pyroelektrického senzoru bude navržen nízkošumový zesilovač. Součástí práce je také návrh a realizace algoritmu pro lokalizaci infračerveného zdroje záření (plamene) v prostoru, na základě vyhodnoceného analogového signálu.The thesis analyzes the physical properties of the pyroelectric sensors and its practical use. Essential part of the work is the design and realization of the measuring set-up, which is used for the measurements of the sensors physical properties. With this workbench, main parameters of the pyroelectric sensors have been obtained. The second part of the work deals with a low noise preamplifier designing. This device was designed for the pyroelectric sensor signal measurements. The amplifier is designed to be used for a low noise, wide band measuring. During the process of amplifier designing, all the noise components have been investigated separately, using operational amplifiers models. The objective of the last part of this work is to develop the system, which would be able to localize an infrared (IR) emitting source located somewhere in the space between the installed pyroelectric sensors. For this purpose, classical localization methods could be used as well as the artificial neural networks (ANN), which are becoming still more popular these days. The system is able to detect the exact placement of the IR radiation source.

    NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 14)

    Get PDF
    Abstracts are cited for 213 patents and applications for patent introduced into the NASA scientific and technical information system during the period of July 1978 through December 1978. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or application for patent

    Photodetectors

    Get PDF
    In this book some recent advances in development of photodetectors and photodetection systems for specific applications are included. In the first section of the book nine different types of photodetectors and their characteristics are presented. Next, some theoretical aspects and simulations are discussed. The last eight chapters are devoted to the development of photodetection systems for imaging, particle size analysis, transfers of time, measurement of vibrations, magnetic field, polarization of light, and particle energy. The book is addressed to students, engineers, and researchers working in the field of photonics and advanced technologies

    Epitaxial growth of iii-nitride nanostructures and their optoelectronic applications

    Get PDF
    Light-emitting diodes (LEDs) using III-nitride nanowire heterostructures have been intensively studied as promising candidates for future phosphor-free solid-state lighting and full-color displays. Compared to conventional GaN-based planar LEDs, III-nitride nanowire LEDs exhibit numerous advantages including greatly reduced dislocation densities, polarization fields, and quantum-confined Stark effect due to the effective lateral stress relaxation, promising high efficiency full-color LEDs. Beside these advantages, however, several factors have been identified as the limiting factors for further enhancing the nanowire LED quantum efficiency and light output power. Some of the most probable causes have been identified as due to the lack of carrier confinement in the active region, non-uniform carrier distribution, and electron overflow. Moreover, the presence of large surface states and defects contribute significantly to the carrier loss in nanowire LEDs. In this dissertation, a unique core-shell nanowire heterostructure is reported, that could overcome some of the aforementioned-problems of nanowire LEDs. The device performance of such core-shell nanowire LEDs is significantly enhanced by employing several effective approaches. For instance, electron overflow and surface states/defects issues can be significantly improved by the usage of electron blocking layer and by passivating the nanowire surface with either dielectric material / large bandgap energy semiconductors, respectively. Such core-shell nanowire structures exhibit significantly increased carrier lifetime and massively enhanced photoluminescence intensity compared to conventional InGaN/GaN nanowire LEDs. Furthermore, AlGaN based ultraviolet LEDs are studied and demonstrated in this dissertation. The simulation studies using Finite-Difference Time-Domain method (FDTD) substantiate the design modifications such as flip-chip nanowire LED introduced in this work. High performance nanowire LEDs on metal substrates (copper) were fabricated via substrate-transfer process. These LEDs display higher output power in comparison to typical nanowire LEDs grown on Si substrates. By engineering the device active region, high brightness phosphor-free LEDs on Cu with highly stable white light emission and high color rendering index of \u3e 95 are realized. High performance nickel?zinc oxide (Ni-ZnO) and zinc oxide-graphene (ZnO-G) particles have been fabricated through a modified polyol route at 250?C. Such materials exhibit great potential for dye-sensitized solar cell (DSSC) applications on account of the enhanced short-circuit current density values and improved efficiency that stems from the enhanced absorption and large surface area of the composite. The enhanced absorption of Ni-ZnO composites can be explained by the reduction in grain boundaries of the composite structure as well as to scattering at the grain boundaries. The impregnation of graphene into ZnO structures results in a significant increase in photocurrent consequently due to graphene\u27s unique attributes including high surface area and ultra-high electron mobility. Future research directions will involve the development of such wide-bandgap devices such as solar cells, full color LEDs, phosphor free white-LEDs, UV LEDs and laser diodes for several applications including general lighting, wearable flexible electronics, water purification, as well as high speed LEDs for visible light communications
    corecore