193 research outputs found

    Southern Ocean warming: Increase in basal melting and grounded ice loss

    Get PDF
    We apply a global finite element sea ice/ice shelf/ocean model (FESOM) to the Antarctic marginal seas to analyze projections of ice shelf basal melting in a warmer climate. The model is forced with the atmospheric output from two climate models: (1) the Hadley Centre Climate Model (HadCM3) and (2) Max Planck Institute’s ECHAM5/MPI-OM. Results from their 20th-century simulations are used to evaluate the modeled present-day ocean state. Sea-ice coverage is largely realistic in both simulations. Modeled ice shelf basal melt rates compare well with observations in both cases, but are consistently smaller for ECHAM5/MPI-OM. Projections for future ice shelf basal melting are computed using atmospheric output for IPCC scenarios E1 and A1B. While trends in sea ice coverage, ocean heat content, and ice shelf basal melting are small in simulations forced with ECHAM5 data, a substantial shift towards a warmer regime is found in experiments forced with HadCM3 output. A strong sensitivity of basal melting to increased ocean temperatures is found for the ice shelves in the Amundsen Sea. For the cold-water ice shelves in the Ross and Weddell Seas,decreasing convection on the continental shelf in the HadCM3 scenarios leads to an erosion of the continental slope front and to warm water of open ocean origin entering the continental shelf. As this water reaches deep into the Filchner-Ronne Ice Shelf (FRIS) cavity, basal melting increases by a factor of three to six compared to the present value of about 100 Gt/yr. Highest melt rates at the deep FRIS grounding line causes a retreat of > 200km, equivalent to an land ice loss of 110 Gt/yr

    Earth Observing System. Volume 1, Part 2: Science and Mission Requirements. Working Group Report Appendix

    Get PDF
    Areas of global hydrologic cycles, global biogeochemical cycles geophysical processes are addressed including biological oceanography, inland aquatic resources, land biology, tropospheric chemistry, oceanic transport, polar glaciology, sea ice and atmospheric chemistry

    Satellites: New global observing techniques for ice and snow

    Get PDF
    The relation of aereal extent of snow cover to the average monthly runoff in a given watershed was investigated by comparing runoff records with a series of snowcover maps. Studies using the high spatial resolution available with ERTS-1 imagery were carried out for the Wind River Mountains watersheds in Wyoming, where it was found that the empirical relationship varied with mean elevation of the watershed. In addition, digital image enhancement techniques are shown to be useful for identifying glacier features related to extent of snowcover, moraine characteristics, and debris average. Longer wavelength observations using sensors on board the Nimbus 5 Satellite are shown to be useful for indicating crystal size distributions and onset of melting on glacier snow cover

    Surface flooding of Antarctic summer sea ice

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ackley, S. F., Perovich, D. K., Maksym, T., Weissling, B., & Xie, H. Surface flooding of Antarctic summer sea ice. Annals of Glaciology, 61(82), (2020): 117-126, doi:10.1017/aog.2020.22.The surface flooding of Antarctic sea ice in summer covers 50% or more of the sea-ice area in the major summer ice packs, the western Weddell and the Bellingshausen-Amundsen Seas. Two CRREL ice mass-balance buoys were deployed on the Amundsen Sea pack in late December 2010 from the icebreaker Oden, bridging the summer period (January–February 2011). Temperature records from thermistors embedded vertically in the snow and ice showed progressive increases in the depth of the flooded layer (up to 0.3–0.35 m) on the ice cover during January and February. While the snow depth was relatively unchanged from accumulation (<10 cm), ice thickness decreased by up to a meter from bottom melting during this period. Contemporaneous with the high bottom melting, under-ice water temperatures up to 1°C above the freezing point were found. The high temperature arises from solar heating of the upper mixed layer which can occur when ice concentration in the local area falls and lower albedo ocean water is exposed to radiative heating. The higher proportion of snow ice found in the Amundsen Sea pack ice therefore results from both winter snowfall and summer ice bottom melt found here that can lead to extensive surface flooding.This work was supported by the National Science Foundation grant to UTSA, ANT-0839053-Sea Ice System in Antarctic Summer (S.F. Ackley, H. Xie and B. Weissling), and to WHOI, ANT-1341513 (T. Maksym), and by the NASA Center for Advanced Measurements in Extreme Environments or NASA-CAMEE at UTSA, NASA #80NSSC19M0194 (S.F. Ackley, H. Xie, B.Weissling)

    CLIVAR Exchanges No. 35. Southern Hemisphere Climate Variability

    Get PDF

    Acoustic insights into the zooplankton dynamics of the eastern Weddell Sea

    Get PDF
    The success of any efforts to determine the effects of climate change on marine ecosystems depends on understanding in the first instance the natural variations, which contemporarily occur on the interannual and shorter time scales. Here we present results on the environmental controls of zooplankton distribution patterns and behaviour in the eastern Weddell Sea, Southern Ocean. Zooplankton abundance and vertical migration are derived from the mean volume backscattering strength (MVBS) and the vertical velocity measured by moored acoustic Doppler current profilers (ADCPs), which were deployed simultaneously at 64°S, 66.5°S and 69°S along the Greenwich Meridian from February, 2005, until March, 2008. While these time series span a period of full three years they resolve hourly changes. A highly persistent behavioural pattern found at all three mooring locations is the synchronous diel vertical migration (DVM) of two distinct groups of zooplankton that migrate between a deep residence depth during daytime and a shallow depth during nighttime. The DVM was closely coupled to the astronomical daylight cycles. However, while the DVM was symmetric around local noon, the annual modulation of the DVM was clearly asymmetric around winter solstice or summer solstice, respectively, at all three mooring sites. DVM at our observation sites persisted throughout winter, even at the highest latitude exposed to the polar night. Since the magnitude as well as the relative rate of change of illumination is minimal at this time, we propose that the ultimate causes of DVM separated from the light-mediated proximal cue that coordinates it. In all three years, a marked change in the migration behaviour occurred in late spring (late October/early November), when DVM ceased. The complete suspension of DVM after early November is possibly caused by the combination of two factors: (1) increased availability of food in the surface mixed layer provided by the phytoplankton spring bloom, and (2) vanishing diurnal enhancement of the threat from visually oriented predators when the illumination is quasi-continuous during the polar and subpolar summer. Zooplankton abundance in the water column, estimated as the mean MVBS in the depth range 50–300 m, was highest end of summer and lowest mid to end winter on the average annual cycle. However, zooplankton abundance varied several-fold between years and between locations. Based on satellite and in situ data of chlorophyll and sea ice as well as on hydrographic measurements, the interannual and spatial variations of zooplankton mean abundance can be explained by differences in the magnitude of the phytoplankton spring bloom, which develops during the seasonal sea ice retreat. Whereas the vernal ice melt appears necessary to stimulate the blooming of phytoplankton, it is not the determinator of the blooms magnitude, its areal extent and duration. A possible explanation for the limitation of the phytoplankton bloom in some years is top-down control. We hypothesise that the phytoplankton spring development can be curbed by grazing when the zooplankton had attained high abundance by growth during the preceding summer

    Warming beneath an East Antarctic ice shelf due to increased subpolar westerlies and reduced sea ice

    Get PDF
    Understanding how climate change influences ocean-driven melting of the Antarctic ice shelves is one of the greatest challenges for projecting future sea level rise. The East Antarctic ice shelf cavities host cold water masses that limit melting, and only a few short-term observational studies exist on what drives warm water intrusions into these cavities. We analyse nine years of continuous oceanographic records from below Fimbulisen and relate them to oceanic and atmospheric forcing. On monthly time scales, warm inflow events are associated with weakened coastal easterlies reducing downwelling in front of the ice shelf. Since 2016, however, we observe sustained warming, with inflowing Warm Deep Water temperatures reaching above 0 °C. This is concurrent with an increase in satellite-derived basal melt rates of 0.62 m/yr, which nearly doubles the basal mass loss at this relatively cold ice shelf cavity. We find that this transition is linked to a reduction in coastal sea ice cover through an increase in atmosphere–ocean momentum transfer and to a strengthening of remote subpolar westerlies. These results imply that East Antarctic ice shelves may become more exposed to warmer waters with a projected increase of circum-Antarctic westerlies, increasing this region’s relevance for sea level rise projections.publishedVersio

    Sea Ice on the Southern Ocean

    Get PDF
    Year-round satellite records of sea ice distribution now extend over more than two decades, providing a valuable tool to investigate related characteristics and circulations in the Southern Ocean. We have studied a variety of features indicative of oceanic and atmospheric interactions with Antarctic sea ice. In the Amundsen & Bellingshausen Seas, sea ice extent was found to have decreased by approximately 20% from 1973 through the early 1990's. This change coincided with and probably contributed to recently warmer surface conditions on the west side of the Antarctic Peninsula, where air temperatures have increased by approximately 0.5 C/decade since the mid-1940's. The sea ice decline included multiyear cycles of several years in length superimposed on high interannual variability. The retreat was strongest in summer, and would have lowered the regional mean ice thickness, with attendant impacts upon vertical heat flux and the formation of snow ice and brine. The cause of the regional warming and loss of sea ice is believed to be linked to large-scale circulation changes in the atmosphere and ocean. At the eastern end of the Weddell Gyre, the Cosmonaut Polyna revealed greater activity since 1986, a recurrence pattern during recent winters and two possible modes of formation. Persistence in polynya location was noted off Cape Ann, where the coastal current can interact more strongly with the Antarctic Circumpolar Current. As a result of vorticity conservation, locally enhanced upwelling brings warmer deep water into the mixed layer, causing divergence and melting. In the Ross Sea, ice extent fluctuates over periods of several years, with summer minima and winter maxima roughly in phase. This leads to large interannual cycles of sea ice range, which correlate positively with meridinal winds, regional air temperatures and subsequent shelf water salinities. Deep shelf waters display considerable interannual variability, but have freshened by approximately 0.03/decade since the late 1950's. That could have slowed the thermohaline circulation beneath the Ross Ice Shelf and the properties or volume of local bottom water production

    Measurement And Evolution Of The Thickness Distribution And Morphology Of Deformed Features Of Antarctic Sea Ice

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2003Antarctic sea ice thickness data obtained from drilling on sea ice floes were examined with the goal of enhancing our capability to estimate ice thickness remotely, especially from air- or space-borne altimetry and shipboard visual observations. The state of hydrostatic equilibrium of deformed ice features and the statistical relationships between ice thickness and top surface roughness were examined. Results indicate that ice thickness may be estimated fairly reliably from surface measurements of snow elevation on length scales of ?100 m. Examination of the morphology of deformed ice features show that Antarctic pressure ridges are flatter and less massive than Arctic pressure ridges and that not all surface features (ridge sails) are associated with features underwater (ridge keels). I propose that the differences in morphology are due to differences in sampling strategies, parent ice characteristics and the magnitude and duration of driving forces. As a result of these findings, the existing methodology used to estimate ice thickness from shipboard visual observations was modified to incorporate the probability that a sail is associated with a keel underwater, and the probability that keels may be found under level surfaces. Using the improved methodology, ice thickness was estimated from ship observations data obtained during two cruises in the Ross Sea, Antarctica. The dynamic and thermodynamic processes involved in the development of the ice prior to their observation were examined employing a regional sea ice-mixed layer-pycnocline model. Both our model results and previously published ice core data indicate that thermodynamic thickening is the dominant process that determines the thickness of first year ice in the central Ross Sea, although dynamic thickening also plays a significant role. Ice core data also indicate that snow ice forms a significant proportion of the total ice mass. For ice in the northeast Ross Sea in the summer, model results and evidence from ice core and oceanographic data indicate that dynamic thickening, snow ice formation and bottom melting compete to determine the ice thickness during mid and late winter
    corecore