119 research outputs found

    Micro-combs: a novel generation of optical sources

    Get PDF
    The quest towards the integration of ultra-fast, high-precision optical clocks is reflected in the large number of high-impact papers on the topic published in the last few years. This interest has been catalysed by the impact that high-precision optical frequency combs (OFCs) have had on metrology and spectroscopy in the last decade [1–5]. OFCs are often referred to as optical rulers: their spectra consist of a precise sequence of discrete and equally-spaced spectral lines that represent precise marks in frequency. Their importance was recognised worldwide with the 2005 Nobel Prize being awarded to T.W. Hänsch and J. Hall for their breakthrough in OFC science [5]. They demonstrated that a coherent OFC source with a large spectrum – covering at least one octave – can be stabilised with a self-referenced approach, where the frequency and the phase do not vary and are completely determined by the source physical parameters. These fully stabilised OFCs solved the challenge of directly measuring optical frequencies and are now exploited as the most accurate time references available, ready to replace the current standard for time. Very recent advancements in the fabrication technology of optical micro-cavities [6] are contributing to the development of OFC sources. These efforts may open up the way to realise ultra-fast and stable optical clocks and pulsed sources with extremely high repetition-rates, in the form of compact and integrated devices. Indeed, the fabrication of high-quality factor (high-Q) micro-resonators, capable of dramatically amplifying the optical field, can be considered a photonics breakthrough that has boosted not only the scientific investigation of OFC sources [7–13] but also of optical sensors and compact light modulators [6,14]

    Perspective on unconventional computing using magnetic skyrmions

    Full text link
    Learning and pattern recognition inevitably requires memory of previous events, a feature that conventional CMOS hardware needs to artificially simulate. Dynamical systems naturally provide the memory, complexity, and nonlinearity needed for a plethora of different unconventional computing approaches. In this perspective article, we focus on the unconventional computing concept of reservoir computing and provide an overview of key physical reservoir works reported. We focus on the promising platform of magnetic structures and, in particular, skyrmions, which potentially allow for low-power applications. Moreover, we discuss skyrmion-based implementations of Brownian computing, which has recently been combined with reservoir computing. This computing paradigm leverages the thermal fluctuations present in many skyrmion systems. Finally, we provide an outlook on the most important challenges in this field.Comment: 19 pages and 3 figure

    Subwavelength Engineering of Silicon Photonic Waveguides

    Get PDF
    The dissertation demonstrates subwavelength engineering of silicon photonic waveguides in the form of two different structures or avenues: (i) a novel ultra-low mode area v-groove waveguide to enhance light-matter interaction; and (ii) a nanoscale sidewall crystalline grating performed as physical unclonable function to achieve hardware and information security. With the advancement of modern technology and modern supply chain throughout the globe, silicon photonics is set to lead the global semiconductor foundries, thanks to its abundance in nature and a mature and well-established industry. Since, the silicon waveguide is the heart of silicon photonics, it can be considered as the core building block of modern integrated photonic systems. Subwavelength structuring of silicon waveguides shows immense promise in a variety of field of study, such as, tailoring electromagnetic near fields, enhancing light-matter interactions, engineering anisotropy and effective medium effects, modal and dispersion engineering, nanoscale sensitivity etc. In this work, we are going to exploit the boundary conditions of modern silicon photonics through subwavelength engineering by means of novel ultra-low mode area v-groove waveguide to answer long-lasting challenges, such as, fabrication of such sophisticated structure while ensuring efficient coupling of light between dissimilar modes. Moreover, physical unclonable function derived from our nanoscale sidewall crystalline gratings should give us a fast and reliable optical security solution with improved information density. This research should enable new avenues of subwavelength engineered silicon photonic waveguide and answer to many unsolved questions of silicon photonics foundries

    Nonlinear and Quantum Optics with Whispering Gallery Resonators

    Full text link
    Optical Whispering Gallery Modes (WGMs) derive their name from a famous acoustic phenomenon of guiding a wave by a curved boundary observed nearly a century ago. This phenomenon has a rather general nature, equally applicable to sound and all other waves. It enables resonators of unique properties attractive both in science and engineering. Very high quality factors of optical WGM resonators persisting in a wide wavelength range spanning from radio frequencies to ultraviolet light, their small mode volume, and tunable in- and out- coupling make them exceptionally efficient for nonlinear optical applications. Nonlinear optics facilitates interaction of photons with each other and with other physical systems, and is of prime importance in quantum optics. In this paper we review numerous applications of WGM resonators in nonlinear and quantum optics. We outline the current areas of interest, summarize progress, highlight difficulties, and discuss possible future development trends in these areas.Comment: This is a review paper with 615 references, submitted to J. Op

    A perspective on physical reservoir computing with nanomagnetic devices

    Full text link
    Neural networks have revolutionized the area of artificial intelligence and introduced transformative applications to almost every scientific field and industry. However, this success comes at a great price; the energy requirements for training advanced models are unsustainable. One promising way to address this pressing issue is by developing low-energy neuromorphic hardware that directly supports the algorithm's requirements. The intrinsic non-volatility, non-linearity, and memory of spintronic devices make them appealing candidates for neuromorphic devices. Here we focus on the reservoir computing paradigm, a recurrent network with a simple training algorithm suitable for computation with spintronic devices since they can provide the properties of non-linearity and memory. We review technologies and methods for developing neuromorphic spintronic devices and conclude with critical open issues to address before such devices become widely used

    Third-order Optical Nonlinearities for Integrated Microwave Photonics Applications

    Get PDF
    The field of integrated photonics aims at compressing large and environmentally-sensitive optical systems to micron-sized circuits that can be mass-produced through existing semiconductor fabrication facilities. The integration of optical components on single chips is pivotal to the realization of miniature systems with high degree of complexity. Such novel photonic chips find abundant applications in optical communication, spectroscopy and signal processing. This work concentrates on harnessing nonlinear phenomena to this avail. The first part of this dissertation discusses, both from component and system level, the development of a frequency comb source with a semiconductor mode-locked laser at its heart. New nonlinear devices for supercontinuum and second-harmonic generations are developed and their performance is assessed inside the system. Theoretical analysis of a hybrid approach with synchronously-pumped Kerr cavity is also provided. The second part of the dissertation investigates stimulated Brillouin scattering (SBS) in integrated photonics. A fully-tensorial open-source numerical tool is developed to study SBS in optical waveguides composed of crystalline materials, particularly silicon. SBS is demonstrated in an all-silicon optical platform

    Free-carrier-driven Kerr frequency comb in optical microcavities: Steady state, bistability, self-pulsation, and modulation instability

    Get PDF
    Continuous-wave pumped optical microresonators have been vastly exploited to generate a frequency comb (FC) utilizing the Kerr nonlinearity. Most of the nonlinear materials used to build photonic platforms exhibit nonlinear losses such as multiphoton absorption, free-carrier absorption, and free-carrier dispersion which can strongly affect their nonlinear performances. In this work, we model the Kerr FC based on a modified Lugiato-Lefever equation (LLE) along with the rate equation and develop analytical formulations to make a quick estimation of the steady state, bistability, self-pulsation, and modulation instability (MI) gain and bandwidth in the presence of nonlinear losses. The analytical model is valid over a broad wavelength range as it includes the effects of all nonlinear losses. Higher-order (>3)characteristic polynomials of intracavity power describing the steady-state homogeneous solution of the modified LLE are discussed in detail. We derive the generalized analytical expressions for the threshold (normalized) pump detuning that initiates the optical bistability when nonlinear losses are present. Free-carrier dispersion-led nonlinear cavity detuning is observed through the reverse Kerr tilt of the resonant peaks. We further deduce the expressions of the threshold pump intensity and the range of possible cavity detuning for the initiation of the MI considering the presence of nonlinear losses. The proposed model will be helpful in explaining several numerical and experimental results which have been previously reported and thereby will be able to provide a better understanding of the comb dynamics

    Microstructured magnetic materials for RF flux guides in magnetic resonance imaging

    Get PDF
    Abstract: We present novel metamaterial structures based upon various planar wallpaper groups, in both hexagonal and square unit cells. An investigation of metamaterials consisting of one, two, and three unique sub-lattices with resonant frequencies in the terahertz (THz) was performed. We describe the theory, perform simulations, and conduct experiments to characterize these multiple element metamaterials. A method for using these new structures as a means for bio / chemical hazard detection, as well as electromagnetic signature control is proposed
    • …
    corecore