11 research outputs found

    Multiple Volume Scattering in Random Media and Periodic Structures with Applications in Microwave Remote Sensing and Wave Functional Materials

    Full text link
    The objective of my research is two-fold: to study wave scattering phenomena in dense volumetric random media and in periodic wave functional materials. For the first part, the goal is to use the microwave remote sensing technique to monitor water resources and global climate change. Towards this goal, I study the microwave scattering behavior of snow and ice sheet. For snowpack scattering, I have extended the traditional dense media radiative transfer (DMRT) approach to include cyclical corrections that give rise to backscattering enhancements, enabling the theory to model combined active and passive observations of snowpack using the same set of physical parameters. Besides DMRT, a fully coherent approach is also developed by solving Maxwell’s equations directly over the entire snowpack including a bottom half space. This revolutionary new approach produces consistent scattering and emission results, and demonstrates backscattering enhancements and coherent layer effects. The birefringence in anisotropic snow layers is also analyzed by numerically solving Maxwell’s equation directly. The effects of rapid density fluctuations in polar ice sheet emission in the 0.5~2.0 GHz spectrum are examined using both fully coherent and partially coherent layered media emission theories that agree with each other and distinct from incoherent approaches. For the second part, the goal is to develop integral equation based methods to solve wave scattering in periodic structures such as photonic crystals and metamaterials that can be used for broadband simulations. Set upon the concept of modal expansion of the periodic Green’s function, we have developed the method of broadband Green’s function with low wavenumber extraction (BBGFL), where a low wavenumber component is extracted and results a non-singular and fast-converging remaining part with simple wavenumber dependence. We’ve applied the technique to simulate band diagrams and modal solutions of periodic structures, and to construct broadband Green’s functions including periodic scatterers.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/135885/1/srtan_1.pd

    Multiple Volume Scattering in Random Media and Periodic Structures with Applications in Microwave Remote Sensing and Wave Functional Materials

    Full text link
    The objective of my research is two-fold: to study wave scattering phenomena in dense volumetric random media and in periodic wave functional materials. For the first part, the goal is to use the microwave remote sensing technique to monitor water resources and global climate change. Towards this goal, I study the microwave scattering behavior of snow and ice sheet. For snowpack scattering, I have extended the traditional dense media radiative transfer (DMRT) approach to include cyclical corrections that give rise to backscattering enhancements, enabling the theory to model combined active and passive observations of snowpack using the same set of physical parameters. Besides DMRT, a fully coherent approach is also developed by solving Maxwell’s equations directly over the entire snowpack including a bottom half space. This revolutionary new approach produces consistent scattering and emission results, and demonstrates backscattering enhancements and coherent layer effects. The birefringence in anisotropic snow layers is also analyzed by numerically solving Maxwell’s equation directly. The effects of rapid density fluctuations in polar ice sheet emission in the 0.5~2.0 GHz spectrum are examined using both fully coherent and partially coherent layered media emission theories that agree with each other and distinct from incoherent approaches. For the second part, the goal is to develop integral equation based methods to solve wave scattering in periodic structures such as photonic crystals and metamaterials that can be used for broadband simulations. Set upon the concept of modal expansion of the periodic Green’s function, we have developed the method of broadband Green’s function with low wavenumber extraction (BBGFL), where a low wavenumber component is extracted and results a non-singular and fast-converging remaining part with simple wavenumber dependence. We’ve applied the technique to simulate band diagrams and modal solutions of periodic structures, and to construct broadband Green’s functions including periodic scatterers.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137141/1/srtan_1.pd

    Vegetation/Forest Effects in Microwave Remote Sensing of Soil Moisture

    Full text link
    This thesis includes (1) the distorted Born approximation (DBA) and an improved coherent model for vegetation-covered surfaces at L-band for data-cube based soil moisture retrieval; (2) a unified approach for combined active and passive remote sensing of vegetation-covered surfaces with the same input physical parameters; (3) Numerical Maxwell Model in 3D (NMM3D) simulations of a vegetation canopy comprising randomly distributed dielectric cylinders; and (4) a hybrid method based on the generalized T matrix of single objects and Foldy-Lax equations for NMM3D full-wave simulations of the realistic vegetation/forest with vector spherical, spheroidal and cylindrical wave expansoins. The main contributions and novelty of this thesis are NMM3D full-wave simulations of vegetation/forest canopy using the generalized T matrix of the single object and Foldy-Lax equations of multiple scattering among many objects. Before this work, the large-scale full-wave simulations of vegetation/forst such as many tree trunks were deemed very difficult. The NMM3D full-wave simulation results showed that the results of past models significantly overestimate attenuation in a vegetation/forest canopy. The NMM3D full-wave models predict transmissions that are several times greater than that of past models. A much greater microwave transmission means the microwave can better penetrate a vegetation/forest canopy and thus it can be used to retrieve soil moisture. The thesis starts with the DBA to compute the backscattering coefficients for various kinds of vegetation-covered surfaces such as pasture, wheat and canola fields. For the soybean fields, an improved coherent branching model is used. The novel feature of the analytic coherent model consists of conditional probability functions to eliminate the overlapping effects of branches in the former branching models. In order to make use of complex physical models for real time retrieval for satellite missions, the outputs of the physical model are provided as lookup-tables (data-cubes). By inverting the lookup-tables, time-series retrieval of soil moisture is performed. Next, the DBA is extended to calculate the bistatic scattering coefficients. Emissivities are calculated by integrating the bistatic scattering coefficients over the hemispherical solid angle. The backscattering coefficients and emissivities calculated using this approach form a consistent model for combined active and passive microwave remote sensing. In the analytical physical models mentioned above, as well as in another commonly used approach of the radiative transfer equation (RTE), the attenuation of the wave is accounted for by the attenuation rate per unit distance, which originates from the concept of an “effective medium”. Such a model is unsuitable for a vegetation canopy. Because of these issues, NMM3D full-wave simulations of vegetation are pursued. Firstly, the scattering of a vegetation canopy consisting of cylindrical scatterers is calculated. The approach for solving Maxwell’s equations is based on the Foldy-Lax multiple scattering equations (FL) combined with the body of revolution (BOR). For a layer of extended-cylinders distributed in clusters, the NMM3D simulations at C-band show very different results from DBA/RTE. The method FL-BOR is limited for rotationally symmetric objects such as cylinders and circular disks. To perform NMM3D full-wave simulations for realistic vegetation/forests, a hybrid method is used, which is a hybrid of the off-the-shelf techniques and newly developed techniques. The newly developed techniques are the three key steps of the hybrid method: (1) extracting the generalized T matrix of each single object using vector spheroidal/cylindrical waves, (2) vector wave transformations, and (3) solving FL for all the objects.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/153347/1/huanght_1.pd

    Electromagnetic Modeling for Radar Remote Sensing of Snow-Covered Terrain

    Full text link
    This thesis investigates the radar remote sensing of snow-covered terrain for estimation of snow equivalent water on global scale. The importance and impact of this research stems from the fact that water from snowmelt is the major source of water for inland cities and agriculture during summer. This effort is focused on developing a physics-based model for snow and a fully coherent polarimetric scattering model for snow above ground. Both the physical model and the forward polarimetric scattering model present a significant improvement compared to the existing models for snowpack. Computer-generated snow media are constructed using 3-D spatial exponential correlation functions, along with Lineal-Path functions that serve to preserve the connectivity of the snow particles. A fully-coherent model is presented through the use of the Statistical S-matrix Wave Propagation in Spectral-Domain (SSWaP-SD) technique. The SSWaP-SD depends on the discretization of the medium into thin slabs. Several realizations of a thin snow slab are solved numerically to form the statistics of the scattering matrix representing such a thin snow layer. For each thin slab of the snow-pack, a corresponding polarimetric N-port (representing different directions of scattering) S-matrix is generated. These S-matrices are cascaded using the SSWaP-SD method to calculate the total forward and backward bistatic scattered fields in a fully coherent way. The SSWaP-SD, in conjunction with a Method of Moments (MoM) code based on the Discrete-Dipole Approximation (DDA), is chosen to leverage both the time-efficient computations of the DDA and the full-coherency of the SSWaP-SD method, simultaneously. In addition to the MoM-DDA, a Finite Element Method (FEM) based on commercial software is used for cross-comparison and validation. The simulation results of the backscattering from an arbitrary thick snow layer are presented and validated with measurements. The underlying rough ground surface response is then estimated through both an analytical technique based on the Physical Optics (PO) method and a numerical solver based on MoM using a commercial full-wave solver. Finally, the complete response is then calculated by cascading the S-matrices representing the snow and the rough surface responses. The simulation results of the backscattering are presented using a Monte-Carlo process, which show very good agreement with measurements.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/167972/1/mzaky_1.pd

    Passive Microwave Remote Sensing of Snow Layers Using Novel Wideband Radiometer Systems and RFI Mitigation

    Full text link
    Climate change can reduce the availability of water resources in many regions, and it will affect agriculture, industry, and energy supply. Snowpack monitoring is important in water resource management as well as flood and avalanche protection. The rapid melting process due to global warming changes the snowpacks' annual statistics, including the extent, and the snow water equivalent (SWE) of seasonal snowpacks, which results in non-stationary annual statistics that should be monitored in nearly daily intervals. The development of advanced radiometric sensors capable of accurately measuring the snowpack thickness and SWE is needed for the long-term study of the snowpack parameters' statistical changes. Passive microwave radiometry provides a means for measuring the microwave emission from a scene of snow and ice. A Wideband Autocorrelation Radiometer (ac{WiBAR}) operating from 1-2~GHz measures spontaneous emission from snowpack at long wavelengths where the scattering is minimized, but the snow layer coherent effects are preserved. By using a wide bandwidth to measure the spacing between frequencies of constructive and destructive interference of the emission from the soil under the snow, it can reveal the microwave travel time through the snow, and thus the snow depth. However, narrowband radio frequency interference (RFI) in the WiBAR's frequency of operations reduces the ability of the WiBAR to measure the thickness accurately. In addition, the current WiBAR system is a frequency domain, FD-WiBAR, system that uses a field-portable spectrum analyzer to collect the data and suffers from high data acquisition time which limits its applications for spaceborne and airborne technologies. In this work, a novel frequency tunable microwave comb filter is proposed for RFI mitigation. The frequency response of the proposed filter has a pattern with many frequencies band-pass and band rejection that preserves the frequency span while reducing the RFI. Moreover, we demonstrate time-domain WiBAR, TD-WiBAR, which presented as an alternative method for FD-WiBAR, and is capable of providing faster data acquisition. A new time-domain calibration is also developed for TD-WiBAR and evaluated with the frequency domain calibration. To validate the TD-WiBAR method, simulated laboratory measurements are performed using a microwave scene simulator circuit. Then the WiBAR instrument is enhanced with the proposed comb filter and showed the RFI mitigation in time-domain mode on an instrument bench test. Furthermore, we analyze the effects of an above snow vegetation layer on brightness temperature spectra, particularly the possible decay of wave coherence arising from volume scattering in the vegetation canopy. In our analysis, the snow layer is assumed to be flat, and its upward emission and surface reflectivities are modeled by a fully coherent model, while an incoherent radiative transfer model describes the volume scattering from the vegetation layer. We proposed a unified framework of vegetation scattering using radiative transfer (RT) theory for passive and active remote sensing of vegetated land surfaces, especially those associated with moderate-to-large vegetation water contents (VWCs), e.g., forest field. The framework allows for modeling passive and active microwave signatures of the vegetated field with the same physical parameters describing the vegetation structure. The proposed model is validated with the passive and active L-band sensor (PALS) acquired in SMAPVEX12 measurements in 2012, demonstrating the applicability of this model.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169653/1/maryamsa_1.pd

    Modeling microwave emission from snow covered soil

    Get PDF
    Il ciclo idrologico rappresenta l’insieme di tutti i fenomeni legati alla circolazione e alla conservazione dell’acqua sulla Terra. Il monitoraggio su scala globale dei fattori che concorrono a produrre e modificare tale ciclo (umidità del terreno, copertura vegetale, estensione e caratteristiche del manto nevoso) risulta di estrema importanza per lo studio del clima e dei cambiamenti globali. Inoltre, l’osservazione sistematica di queste grandezze ù importante per prevedere condizioni di rischio da alluvioni, frane e valanghe come pure fare stime delle risorse idriche. In questo contesto Il telerilevamento da satellite gioca un ruolo fondamentale per le sue caratteristiche di osservazioni continuative di tutto globo terrestre. I sensori a microonde permettono poi di effettuare misure indipendentemente dall’illuminazione solare e anche in condizioni meteorologiche avverse. I processi idrologici, ed in particolare quelli della criosfera (la porzione di superficie terrestre in cui l’acqua ù presente in forma solida), sono fra quelli che meglio si possono investigare analizzando la radiazione elettromagnetica emessa o diffusa. Mediante l’utilizzo di modelli elettromagnetici che permettono di simulare l’emissione e lo scattering da superfici naturali ù possibile interpretare le misure elettromagnetiche ed effettuare l’estrazione di quelle grandezze che caratterizzano i suoli e la loro copertura. In questo lavoro di dottorato si ù affrontato il problema della modellistica a microonde dei terreni coperti da neve, sia asciutta che umida. Dopo aver preso in considerazione i modelli analitici maggiormente utilizzati per simulare diffusione ed emissione a microonde dei suoli nudi e coperti da neve si ù proceduto allo sviluppo e implementazione di due modelli di emissività. Il primo, basato sulla teoria delle fluttuazioni forti, ù atto a descrivere il comportamento di un manto nevoso umido. Il secondo, basato sull’accoppiamento del modello di scattering superficiale AIEM (Advanced Integral Equation Method) con la teoria del trasferimento radiativo nei mezzi densi, ù volto allo studio di uno strato di neve asciutta sovrastante un suolo rugoso. Tali modelli tengono conto degli effetti coerenti presenti nell’emissione del manto nevoso e non inclusi nella teoria del trasporto radiativo classico. Entrambi i codici sono stati validati con datasets numerici e sperimentali in parte derivati da archivi ed in parte ottenuti nel contesto di questo lavoro che ha previsto quindi anche una fase sperimentale. Quest’ultima ù stata condotta con misure radiometriche multifrequenza su un’area di test situata sulle Alpi orientali. Le simulazioni ottenute con questi modelli e le conseguenti analisi hanno permesso di individuare la sensibilità della temperatura di brillanza ai parametri di interesse (spessore, equivalente in acqua e umidità del manto nevoso) in funzione di diverse configurazioni osservative (frequenza, polarizzazione ed angolo di incidenza). Questo ha consentito di migliorare la comprensione dei meccanismi di emissione dalle superfici innevate e di individuare le migliori condizioni osservative per un sistema di telerilevamento terrestre

    Three-Dimensional Electromagnetic Scattering from Layered Media with Rough Interfaces for Subsurface Radar Remote Sensing

    Full text link
    The objective of this dissertation is to develop forward scattering models for active microwave remote sensing of natural features represented by layered media with rough interfaces. In particular, soil profiles are considered, for which a model of electromagnetic scattering from multilayer rough surfaces with/without buried random media is constructed. Starting from a single rough surface, radar scattering is modeled using the stabilized extended boundary condition method (SEBCM). This method solves the long-standing instability issue of the classical EBCM, and gives three-dimensional full wave solutions over large ranges of surface roughnesses with higher computational e±ciency than pure numerical solutions, e.g., method of moments (MoM). Based on this single surface solution, multilayer rough surface scattering is modeled using the scattering matrix approach and the model is used for a comprehensive sensitivity analysis of the total ground scattering as a function of layer separation, subsurface statistics, and sublayer dielectric properties. The buried inhomogeneities such as rocks and vegetation roots are considered for the first time in the forward scattering model. Radar scattering from buried random media is modeled by the aggregate transition matrix using either the recursive transition matrix approach for spherical or short-length cylindrical scatterers, or the generalized iterative extended boundary condition method we developed for long cylinders or root-like cylindrical clusters. These approaches take the field interactions among scatterers into account with high computational efficiency. The aggregate transition matrix is transformed to a scattering matrix for the full solution to the layered-medium problem. This step is based on the near-to-far field transformation of the numerical plane wave expansion of the spherical harmonics and the multipole expansion of plane waves. This transformation consolidates volume scattering from the buried random medium with the scattering from layered structure in general. Combined with scattering from multilayer rough surfaces, scattering contributions from subsurfaces and vegetation roots can be then simulated. Solutions of both the rough surface scattering and random media scattering are validated numerically, experimentally, or both. The experimental validations have been carried out using a laboratory-based transmit-receive system for scattering from random media and a new bistatic tower-mounted radar system for field-based surface scattering measurements.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91459/1/xduan_1.pd

    ModĂ©lisation en bandes C et X de la rĂ©trodiffusion de couverts de neige sĂšche : Ă©valuation de l’apport de l’approximation quasi-cristalline pour les milieux denses.

    Get PDF
    La comprĂ©hension et la modĂ©lisation de l’interaction de l’onde Ă©lectromagnĂ©tique avec la neige sont trĂšs importantes pour l’application des technologies radars Ă  des domaines tels que l’hydrologie et la climatologie. En plus de dĂ©pendre des propriĂ©tĂ©s de la neige, le signal radar mesurĂ© dĂ©pendra aussi des caractĂ©ristiques du capteur et du sol. La comprĂ©hension et la quantification des diffĂ©rents processus de diffusion du signal dans un couvert nival s’effectuent Ă  travers les thĂ©ories de diffusions de l’onde Ă©lectromagnĂ©tique. La neige, dans certaines conditions, peut ĂȘtre considĂ©rĂ©e comme un milieu dense lorsque les particules de glace qui la composent y occupent une fraction volumique considĂ©rable. Dans un tel milieu, les processus de diffusion par les particules ne se font plus de façon indĂ©pendante, mais de façon cohĂ©rente. L’approximation quasi-cristalline pour les milieux denses est une des thĂ©ories Ă©laborĂ©es afin de prendre en compte ces processus de diffusions cohĂ©rents. Son apport a Ă©tĂ© dĂ©montrĂ© dans de nombreuses Ă©tudes pour des frĂ©quences > 10 GHz oĂč l’épaisseur optique de la neige est importante et oĂč la diffusion de volume est prĂ©dominante. Par contre, les capteurs satellitaires radar prĂ©sentement disponibles utilisent les bandes L (1-2GHz), C (4-8GHz) et X (8-12GHz), Ă  des frĂ©quences principalement en deçà des 10 GHz. L’objectif de la prĂ©sente Ă©tude est d’évaluer l’apport du modĂšle de diffusion issu de l’approximation quasi-cristalline pour les milieux denses (QCA/DMRT) dans la modĂ©lisation de couverts de neige sĂšches en bandes C et X. L’approche utilisĂ©e consiste Ă  comparer la modĂ©lisation de couverts de neige sĂšches sous QCA/DMRT Ă  la modĂ©lisation indĂ©pendante sous l’approximation de Rayleigh. La zone d’étude consiste en deux sites localisĂ©s sur des milieux agricoles, prĂšs de LĂ©vis au QuĂ©bec. Au total 9 champs sont Ă©chantillonnĂ©s sur les deux sites afin d’effectuer la modĂ©lisation. Dans un premier temps, une analyse comparative des paramĂštres du transfert radiatif entre les deux modĂšles de diffusion a Ă©tĂ© effectuĂ©e. Pour des paramĂštres de cohĂ©sion infĂ©rieurs Ă  0,15 Ă  des fractions volumiques entre 0,1 et 0,3, le modĂšle QCA/DMRT prĂ©sentait des diffĂ©rences par rapport Ă  Rayleigh. Un coefficient de cohĂ©sion optimal a ensuite Ă©tĂ© dĂ©terminĂ© pour la modĂ©lisation d’un couvert nival en bandes C et X. L’optimisation de ce paramĂštre a permis de conclure qu’un paramĂštre de cohĂ©sion de 0,1 Ă©tait optimal pour notre jeu de donnĂ©es. Cette trĂšs faible valeur de paramĂštre de cohĂ©sion entraĂźne une augmentation des coefficients de diffusion et d’extinction pour QCA/DMRT ainsi que des diffĂ©rences avec les paramĂštres de Rayleigh. Puis, une analyse de l’influence des caractĂ©ristiques du couvert nival sur les diffĂ©rentes contributions du signal est rĂ©alisĂ©e pour les 2 bandes C et X. En bande C, le modĂšle de Rayleigh permettait de considĂ©rer la neige comme Ă©tant transparente au signal Ă  des angles d’incidence infĂ©rieurs Ă  35°. Vu l’augmentation de l’extinction du signal sous QCA/DMRT, le signal en provenance du sol est attĂ©nuĂ© d’au moins 5% sur l’ensemble des angles d’incidence, Ă  de faibles fractions volumiques et fortes tailles de grains de neige, nous empĂȘchant ainsi de considĂ©rer la transparence de la neige au signal micro-onde sous QCA/DMRT en bande C. En bande X, l’augmentation significative des coefficients de diffusion par rapport Ă  la bande C, ne nous permet plus d’ignorer l’extinction du signal. La part occupĂ©e par la rĂ©trodiffusion de volume peut dans certaines conditions, devenir la part prĂ©pondĂ©rante dans la rĂ©trodiffusion totale. Pour terminer, les rĂ©sultats de la modĂ©lisation de couverts de neige sous QCA/DMRT sont validĂ©s Ă  l’aide de donnĂ©es RADARSAT-2 et TerraSAR-X. Les deux modĂšles prĂ©sentaient des rĂ©trodiffusions totales semblables qui concordaient bien avec les donnĂ©es RADARSAT-2 et TerraSAR-X. Pour RADARSAT-2, le RMSE du modĂšle QCA/DMRT est de 2,52 dB en HH et 2,92 dB en VV et pour Rayleigh il est de 2,64 dB en HH et 3,01 dB en VV. Pour ce qui est de TerraSAR-X, le RMSE du modĂšle QCA/DMRT allait de 1,88 dB en HH Ă  2,32 dB en VV et de 2,20 dB en HH Ă  2,71 dB en VV pour Rayleigh. Les valeurs de rĂ©trodiffusion totales des deux modĂšles sont assez similaires. Par contre, les principales diffĂ©rences entre les deux modĂšles sont bien Ă©videntes dans la rĂ©partition des diffĂ©rentes contributions de cette rĂ©trodiffusion totale

    Analyse de la modélisation de l'émission multi-fréquences micro-onde des sols et de la neige, incluant les croutes de glace à l'aide du modÚle Microwave Emission Model of Layered Snowpacks (MEMLS).

    Get PDF
    RĂ©sumĂ© : L'Ă©tude du couvert nival est essentielle afin de mieux comprendre les processus climatiques et hydrologiques. De plus, avec les changements climatiques observĂ©s dans l'hĂ©misphĂšre nord, des Ă©vĂ©nements de dĂ©gel-regel ou de pluie hivernale sont de plus en plus courants et produisent des croutes de glace dans le couvert nival affectant les moeurs des communautĂ©s arctiques en plus de menacer la survie de la faune arctique. La tĂ©lĂ©dĂ©tection micro-ondes passives (MOP) dĂ©montre un grand potentiel de caractĂ©risation du couvert nival. Toutefois, a fin de bien comprendre les mesures satellitaires, une modĂ©lisation adĂ©quate du signal est nĂ©cessaire. L'objectif principal de cette thĂšse est d'analyser le transfert radiatif (TR) MOP des sols, de la neige et de la glace a fin de mieux caractĂ©riser les propriĂ©tĂ©s gĂ©ophysiques du couvert nival par tĂ©lĂ©dĂ©tection. De plus, un indice de dĂ©tection des croutes de glace par tĂ©lĂ©dĂ©tection MOP a Ă©tĂ© dĂ©veloppĂ©. Pour ce faire, le modĂšle Microwave Emission Model of Layered Snowpacks (MEMLS) a Ă©tĂ© Ă©tudiĂ© et calibrĂ© afin de minimiser les erreurs des tempĂ©ratures de brillance simulĂ©es en prĂ©sences de croutes de glace. La premiĂšre amĂ©lioration faite Ă  la modĂ©lisation du TR MOP de la neige a Ă©tĂ© la caractĂ©risation de la taille des grains de neige. Deux nouveaux instruments, utilisant la rĂ©flectance dans le proche infrarouge, ont Ă©tĂ© dĂ©veloppĂ©s afin de mesurer la surface spĂ©cifique de la neige (SSA). Il a Ă©tĂ© dĂ©montrĂ© que la SSA est un paramĂštre plus prĂ©cis et plus objectif pour caractĂ©riser la taille des grains de neige. Les deux instruments ont dĂ©montrĂ© une incertitude de 10% sur la mesure de la SSA. De plus, la SSA a Ă©tĂ© calibrĂ© pour la modĂ©lisation MOP a n de minimiser l'erreur sur la modĂ©lisation de la tempĂ©rature de brillance. Il a Ă©tĂ© dĂ©montrĂ© qu'un facteur multiplicatif [phi] = 1.3 appliquĂ© au paramĂštre de taille des grains de neige dans MEMLS, paramĂštre dĂ©rivĂ© de la SSA, est nĂ©cessaire afin de minimiser l'erreur des simulations. La deuxiĂšme amĂ©lioration apportĂ©e Ă  la modĂ©lisation du TR MOP a Ă©tĂ© l'estimation de l'Ă©mission du sol. Des mesures radiomĂ©triques MOP in-situ ainsi que des profils de tempĂ©ratures de sols organiques arctiques gelĂ©s ont Ă©tĂ© acquis et caractĂ©risĂ©s a fin de simuler l'Ă©mission MOP de ces sols. Des constantes diĂ©lectriques effectives Ă  10.7, 19 et 37 GHz ainsi qu'une rugositĂ© de surface effective des sols ont Ă©tĂ© dĂ©terminĂ©s pour simuler l'Ă©mission des sols. Une erreur quadratique moyenne (RMSE) de 4.65 K entre les simulations et les mesures MOP a Ă©tĂ© obtenue. Suite Ă  la calibration du TR MOP du sol et de la neige, un module de TR de la glace a Ă©tĂ© implĂ©mentĂ© dans MEMLS. Avec ce nouveau module, il a Ă©tĂ© possible de dĂ©montrĂ© que l'approximation de Born amĂ©liorĂ©e, dĂ©jĂ  implĂ©mentĂ© dans MEMLS, pouvait ĂȘtre utilisĂ© pour simuler des croutes de glace pure Ă  condition que la couche de glace soit caractĂ©risĂ©e par une densitĂ© de 917 kg m[indice supĂ©rieur _3] et une taille des grains de neige de 0 mm. Il a aussi Ă©tĂ© dĂ©montrĂ© que, pour des sites caractĂ©risĂ©s par des croutes de glace, les tempĂ©ratures de brillances simulĂ©es des couverts de neige avec des croutes de glace ayant les propriĂ©tĂ©s mesurĂ©es in-situ (RMSE=11.3 K), avaient une erreur similaire aux tempĂ©ratures de brillances simulĂ©es des couverts de neige pour des sites n'ayant pas de croutes de glace (RMSE=11.5 K). Avec le modĂšle MEMLS validĂ© pour la simulation du TR MOP du sol, de la neige et de la glace, un indice de dĂ©tection des croutes de glace par tĂ©lĂ©dĂ©tection MOP a Ă©tĂ© dĂ©veloppĂ©. Il a Ă©tĂ© dĂ©montrĂ© que le ratio de polarisation (PR) Ă©tait trĂšs affectĂ© par la prĂ©sence de croutes de glace dans le couvert de neige. Avec des simulations des PR Ă  10.7, 19 et 37 GHz sur des sites mesurĂ©s Ă  Churchill (Manitoba, Canada), il a Ă©tĂ© possible de dĂ©terminer des seuils entre la moyenne hivernale des PR et les valeurs des PR mesurĂ©s indiquant la prĂ©sence de croutes de glace. Ces seuils ont Ă©tĂ© appliquĂ©s sur une sĂ©rie temporelle de PR de 33 hivers d'un pixel du Nunavik (QuĂ©bec, Canada) oĂč les conditions de sols Ă©taient similaires Ă  ceux observĂ©s Ă  Churchill. Plusieurs croutes de glace ont Ă©tĂ© dĂ©tectĂ©es depuis 1995 et les mĂȘmes Ă©vĂ©nements entre 2002 et 2009 que (Roy, 2014) ont Ă©tĂ© dĂ©tectĂ©s. Avec une validation in-situ, il serait possible de confirmer ces Ă©vĂ©nements de croutes de glace mais (Roy, 2014) a dĂ©montrĂ© que ces Ă©vĂ©nements ne pouvaient ĂȘtre expliquĂ©s que par la prĂ©sence de croutes de glace dans le couvert de neige. Ces mĂȘmes seuils sur les PR ont Ă©tĂ© appliquĂ©s sur un pixel de l'Île Banks (Territoires du Nord-Ouest, Canada). L'Ă©vĂ©nement rĂ©pertoriĂ© par (Grenfell et Putkonen, 2008) a Ă©tĂ© dĂ©tectĂ©. Plusieurs autres Ă©vĂ©nements de croutes de glace ont Ă©tĂ© dĂ©tectĂ©s dans les annĂ©es 1990 et 2000 avec ces seuils. Tous ces Ă©vĂ©nements ont suivi une pĂ©riode oĂč les tempĂ©ratures de l'air Ă©taient prĂšs ou supĂ©rieures au point de congĂ©lation et sont rapidement retombĂ©es sous le point de congĂ©lation. Les tempĂ©ratures de l'air peuvent ĂȘtre utilisĂ©es pour confirmer la possibilitĂ© de prĂ©sence de croutes de glace mais seul la validation in-situ peut dĂ©finitivement confirmer la prĂ©sence de ces croutes.Abstract : Snow cover studies are essential to better understand climatic and hydrologic processes. With recent climate change observed in the northern hemisphere, more frequent rain-on-snow and meltrefreeze events have been reported, which affect the habits of the northern comunities and the survival of arctique wildlife. Passive microwave remote sensing has proven to be a great tool to characterize the state of snow cover. Nonetheless, proper modeling of the microwave signal is needed in order to understand how the parameters of the snowpack affect the measured signal. The main objective of this study is to analyze the soil, snow and ice radiative transfer in order to better characterize snow cover properties and develop an ice lens detection index with satellite passive microwave brightness temperatures. To do so, the passive microwave radiative transfer modeling of the Microwave Emission Model of Layered Snowpacks (MEMLS) was improved in order to minimize the errors on the brightness temperature simulations in the presence of ice lenses. The first improvement to passive microwave radiative transfer modeling of snow made was the snow grain size parameterization. Two new instruments, based on short wave infrared reflectance to measure the snow specific surface area (SSA) were developed. This parameter was shown to be a more accurate and objective to characterize snow grain size. The instruments showed an uncertainty of 10% to measure the SSA of snow. Also, the SSA of snow was calibrated for passive microwave modeling in order to reduce the errors on the simulated brightness temperatures. It was showed that a correction factor of φ = 1.3 needed to be applied to the grain size parameter of MEMLS, obtain through the SSA measurements, to minimize the simulation error. The second improvement to passive microwave radiative transfer modeling was the estimation of passive microwave soil emission. In-situ microwave measurements and physical temperature profiles of frozen organic arctic soils were acquired and characterized to improve the modeling of the soil emission. Effective permittivities at 10.7, 19 and 37 GHz and effective surface roughness were determined for this type of soil and the soil brightness temperature simulations were obtain with a minimal root mean square error (RMSE) of 4.65K. With the snow grain size and soil contributions to the emitted brightness temperature optimized, it was then possible to implement a passive microwave radiative transfer module of ice into MEMLS. With this module, it was possible to demonstrate that the improved Born approximation already implemented in MEMLS was equivalent to simulating a pure ice lens when the density of the layer was set to 917 kg m−3 and the grain size to 0 mm. This study also showed that by simulating ice lenses within the snow with there measured properties, the RMSE of the simulations (RMSE= 11.3 K) was similar to the RMSE for simulations of snowpacks where no ice lenses were measured (only snow, RMSE= 11.5 K). With the validated MEMLS model for snowpacks with ice lenses, an ice index was created. It is shown here that the polarization ratio (PR) was strongly affected by the presence of ice lenses within the snowpack. With simulations of the PR at 10.7, 19 and 37 GHz from measured snowpack properties in Chucrhill (Manitoba, Canada), thresholds between the measured PR and the mean winter PR were determined to detect the presence of ice within the snowpack. These thresholds were applied to a timeseries of nearly 34 years for a pixel in Nunavik (Quebec, Canada) where the soil surface is similar to that of the Churchill site. Many ice lenses are detected since 1995 with these thresholds and the same events as Roy (2014) were detected. With in-situ validation, it would be possible to confirm the precision of these thresholds but Roy (2014) showed that these events can not be explained by anything else than the presence of an ice layer within the snowpack. The same thresholds were applied to a pixel on Banks island (North-West Territories, Canada). The 2003 event that was reported by Grenfell et Putkonen (2008) was detected by the thresholds. Other events in the years 1990 and 2000’s were detected with these thresholds. These events all follow periods where the air temperature were warm and were followed by a quick drop in air temperature which could be used to validate the presence of ice layer within the snowpack. Nonetheless, without in-situ validation, these events can not be confirmed
    corecore