61 research outputs found

    Planar Microwave Sensors for Accurate Measurement of Material Characterization: A Review

    Get PDF
    Microwave sensor is used in various industrial applications and requires highly accurate measurements for material properties. Conventionally, cavity waveguide perturbation, free-space transmission, open-ended coaxial probe, and planar transmission line technique have been used for characterizing materials. However, these planar transmission lines are often large and expensive to build, further restricting their use in many important applications. Thus, this technique is cost effective, easy to manufacture and due to its compact size, it has the potential to produce sensitivity and a high Q-factor for various materials. This paper reviews the common characteristics of planar transmission line and discusses numerous studies about several designs of the microstrip resonator to improve the sensor performance in terms of the sensitivity and accuracy. This technique enables its use for several industrial applications such as agriculture and quality control. It is believed that previous studies would lead to a promising solution of characterizing materials with high sensitivity, particularly in determining a high Q-factor resonator sensor

    Radio-Frequency Sensors for High Performance Liquid Chromatography Applications

    Get PDF
    As a fast-developing analytical technique for separation, purification, identification and quantification of components in a mixture, high performance liquid chromatography (HPLC) has been widely used in various fields including biology, food, environment, pharmacy and so on. As a critical part in the HPLC system, the detector with the feature of high sensitivity, universal detection and gradient-elution compatibility is highly desired. In this dissertation, two types of radio-frequency (RF) sensors for HPLC gradient applications are presented: a tunable interferometer (TIM) and a modified square ring loaded resonator (SRLR). For the TIM-based sensor, the sensitivity is evaluated by measuring a few common chemicals in DI water at multiple frequencies from 0.98 GHz to 7.09 GHz. Less than 84 ppm limit of detection (LOD) is demonstrated. An algorithm is provided and used to obtain sample dielectric permittivity at each frequency point. When connected to a commercial HPLC system and injected with a 10 ÎĽL aliquot of 10000 ppm caffeine DI-water solution, the sensor yields a signal-to-noise ratio (SNR) up to 10 under isocratic and gradient elution operations. Furthermore, the sensor demonstrates a capability to quantify co-eluted vitamin E succinate (VES) and vitamin D3 (VD3). For the SRLR-based sensor, where a transmission line and a ring are electrically shorted with a center gap, the detection linearity is characterized by measuring water-caffeine samples from 0.77 ppm to 1000 ppm when connected to the HPLC system. A 0.231 ppm limit of detection (LOD) is achieved, revealing a comparable sensitivity with commercial ultraviolet (UV) detectors. The compatibility of the proposed sensor to gradient elution is also demonstrated. Besides, this work presents a method for the measurement of liquid permittivity without using liquid reference materials or calibration standards. The method uses a single transmission line and a single microfluidic channel which intercepts the line twice. As a result, two transmission line segments are formed with channel sections to measure liquid samples. By choosing a 2:1 ratio for the two line segment lengths, closed-form formulas are provided to calculate line propagation constants directly from measured S-parameters. Then, sample permittivity values are obtained. A coplanar waveguide is built and tested with de-ionized water, methanol, ethanol and 2-propanol from 0.1 GHz to 9 GHz. The obtained performance agrees with simulation results. The obtained sample permittivity values agree with commonly accepted values. Radiofrequency (RF) non-thermal (NT) bio-effects have been a subject of debate and attracted significant interests due to the potential health risks or beneficial applications. A miniature transverse electro-magnetic (TEM) device is designed for broadband investigation of RF NT effects on Saccharomyces cerevisiae growth, a common yeast species. The frequency-dependent yeast permittivity, obtained by measuring the difference between the medium and yeast in the medium, was used to select the applied RF frequencies, i.e., 1.0 MHz, 3.162 MHz, 10 MHz and 905 MHz. The results showed that the RF field at 3.162 MHz reduced yeast growth rates by 11.7%; however, the RF fields at 1.0 MHz and 10 MHz enhanced cell growth rates by 16.2% and 4.3%, respectively. In contrast, the RF field at 905 MHz had no effect on the growth rates

    Double-Layered Metamaterial Resonator Operating At Millimetre Wave FOR Detection Of Dengue Virus

    Get PDF
    In this paper, a metamaterial-based resonator is proposed for the detection of dengue infection. The replaceable top layer can measure the dielectric characteristics of blood samples to detect the dengue virus. The sensor observed a shift in the resonant frequency towards higher frequencies with the reduction in the blood's permittivity. The sensor showed a 0.325 GHz shift in resonance per unit change in the dielectric permittivity. To corroborate the sensor’s practical sensing capability, a sensor prototype was fabricated and validated with alcohol-aqueous solutions. The sensor exhibited shifting of resonance towards lower frequencies with the addition of water contents in methylated alcohol. With the enhanced sensitivity and repeatable measuring capability, the results suggested that this sensor can be applied with real-time applications on the Internet of Medical Things (IoMT) for early remote detection of the dengue outbreak

    Double-layered metamaterial-based resonator operating at millimetre wave for detection of dengue virus

    Get PDF
    The interest in microwave technology for biological applications using metamaterial as sensing element is increasing due to strong electric field compared to traditional microwave sensors. The operation at millimetre-wave frequencies further enhances the field intensity leading to increased sensitivity, which can be used in the detection of the dengue virus and it can be vital in controlling the disease. The millimetre-wave metamaterial-based resonators are presented in this thesis to characterise blood’s dielectric properties in the case of the dengue virus. The correlation coefficient, t-test, and cross-correlation were applied on S11 phase responses. During measurements, tap water was used instead of blood, and methylated alcohol was added to the water to lower its permittivity, mimicking the dielectric response of infected blood. First, a single-layered design with an engraved space to hold blood samples is presented as a proof of concept for blood-sensing and the application of statistical models. This sensor showed a resonance shift of 0.22 GHz due to an 8 unit decrease in blood’s permittivity. In contrast, three (3) designs of two-layered sensors are proposed with replaceable sensing layers suitable for repeated measurements. Double-layered Sensor 1 showed resonance at 36.28 GHz for normal blood. The perturbation observed was 0.88 GHz when the blood’s permittivity was reduced by 8 units. Sensor 2 showed a resonance shift from 27.22 GHz to 29.82 GHz with the 8 unit change in blood’s permittivity. Sensor 3 showed a lesser resonance shift, which is 0.44 GHz. However, the double-layered Sensor 3 has the edge over other designs in terms of its performance in all statistical methods. In double-layered sensors, the replaceable sensing layer provides quick and accurate results. As a result, the sensors presented here can detect the dengue virus using a simple finger-prick blood extraction method

    Non-Invasive Blood Glucose Monitoring Using Electromagnetic Sensors

    Get PDF
    Monitoring glycemia levels in people with diabetes has developed rapidly over the last decade. A broad range of easy-to-use systems of reliable accuracies are now deployed in the market following the introduction of the invasive self-monitoring blood glucose meters (i.e., Glucometers) that utilize the capillary blood samples from the fingertips of diabetic patients. Besides, semi-invasive continuous monitors (CGM) are currently being used to quantify the glucose analyte in interstitial fluids (ISF) using an implantable needle-like electrochemical sensors. However, the limitations and discomforts associated with these finger-pricking and implantable point-of-care devices have established a new demand for complete non-invasive pain-free and low-cost blood glucose monitors to allow for more frequent and convenient glucose checks and thereby contribute more generously to diabetes care and prevention. Towards that goal, researchers have been developing alternative techniques that are more convenient, affordable, pain-free, and can be used for continuous non-invasive blood glucose monitoring. In this research, a variety of electromagnetic sensing techniques were developed for reliably monitoring the blood glucose levels of clinical relevance to diabetes using the non-ionizing electromagnetic radiations of no hazards when penetrating the body. The sensing structures and devices introduced in this study were designed to operate in specific frequency spectrums that promise a reliable and sensitive glucose detection from centimeter- to millimeter-wave bands. Particularly, three different technologies were proposed and investigated at the Centre for Intelligent Antenna and Radio Systems (CIARS): Complementary Split-Ring Resonators (CSRRs), Whispering Gallery Modes (WGMs) sensors, and Frequency-Modulated Continuous-Wave (FMCW) millimeter-Wave Radars. Multiple sensing devices were developed using those proposed technologies in the micro/millimeter-wave spectrums of interest. A comprehensive study was conducted for the functionality, sensitivity, and repeatability analysis of each sensing device. Particularly, the sensors were thoroughly designed, optimized, fabricated, and practically tested in the laboratory with the desired glucose sensitivity performance. Different topologies and configurations of the proposed sensors were studied and compared in sensitivity using experimental and numerical analysis tools. Besides, machine learning and signal processing tools were intelligently applied to analyze the frequency responses of the sensors and reliably identify different glucose levels. The developed glucose sensors were coupled with frequency-compatible radar boards to realize small mobile glucose sensing systems of reduced cost. The proposed sensors, beside their impressive detection capability of the diabetes-spectrum glucose concentrations, are endowed with favourable advantages of simple fabrication, low-power consumption, miniaturized compact sizing, non-ionizing radiation, and minimum health risk or impact for human beings. Such attractive features promote the proposed sensors as possible candidates for development as mobile, portable/wearable gadgets for affordable non-invasive blood glucose monitoring for diabetes. The introduced sensing structures could also be employed for other vital sensing applications such as liquid type/quantity identification, oil adulteration detection, milk quality control, and virus/bacteria detection. Another focus of this thesis is to investigate the electromagnetic behavior of the glucose in blood mimicking tissues across the microwave spectrum from 200 MHz to 67 GHz using a commercial characterization system (DAK-TL) developed by SPEAG. This is beneficial to locate the promising frequency spectrums that are most responsive to slight variations in glucose concentrations, and to identify the amount of change in the dielectric properties due to different concentrations of interest. Besides, the effect of the blood typing and medication was also investigated by measuring the dielectric properties of synthetic “artificial” as well as authentic “human” blood samples of different ABO-Rh types and with different medications. Measured results have posed for other factors that may impact the developed microwave sensors accuracy and sensitivity including the patient’s blood type, pre-existing medical conditions, or other illnesses

    Antenna sensing for wearable applications

    Get PDF
    As wearable technologies are growing fast, there is emerging trend to increase functionality of the devices. Antennas which are primarily component in communication systems can offer attractive route forward to minimize the number of components functioning as a sensing element for wearable and flexible electronics. Toward development of flexible antenna as sensing element, this thesis investigates the development of the flexible and printed sensing NFC RFID tag. In this approach, the sensor measurement is supported by the internal sensor and analog-to-digital convertor (ADC) of the NFC transponder. Design optimisation, fabrication and characterization of the printed antenna are described. Besides, the printed antenna, NFC transponder and two simple resistive sensors are integrated to form a fully flexible sensing RFID tag demonstrating applicability in food and health monitoring. This thesis also presents development of two antenna sensors by using functional materials: (i) An inductor-capacitor (LC) resonant tank based wireless pressure sensor on electrospun Poly-L-lactide (PLLA) nanofibers-based substrate. The screen-printed resonant tank (resonant frequency of ~13.56 MHz) consists of a planar inductor connected in parallel with an interdigitated capacitor. Since the substrates is piezoelectric, the capacitance of the interdigitated capacitor varies in response to the applied pressure. To demonstrate a potential application of developed pressure sensor, it was integrated on a compression bandage to monitor sub-bandage pressure. (ii) To investigate the realization of sensing antenna as temperature sensor simple loop antenna is designed and in this study unlike the first study that the sensing element was the substrate, the conductive body of the antenna itself is considered as a functional material. In this case, a small part of a loop antenna which originally was printed using silver paste is replaced by Poly(3,4-ethylenedioxythiophene): polystyrene (PEDOT: PSS). The sensing mechanism is based on the resonant frequency shift by varying temperature. While using functional materials is useful for realization of antenna sensor, another approach also is presented by developing stretchable textile-based microstrip antennas on deformable substrate which can measure joint angles of a human limb. The EM characteristics of the meshed patch antenna were compared with its metallic counterpart fabricated with lithography technique. Moreover, the concept of stretchable UHF RFID-based strain sensor is touched in the final part of this thesis

    Microwave resonant sensors

    Get PDF
    Microwave resonant sensors use the spectral characterisation of a resonator to make high sensitivity measurements of material electromagnetic properties at GHz frequencies. They have been applied to a wide range of industrial and scientific measurements, and used to study a diversity of physical phenomena. Recently, a number of challenging dynamic applications have been developed that require very high speed and high performance, such as kinetic inductance detectors and scanning microwave microscopes. Others, such as sensors for miniaturised fluidic systems and non-invasive blood glucose sensors, also require low system cost and small footprint. This thesis investigates new and improved techniques for implementing microwave resonant sensor systems, aiming to enhance their suitability for such demanding tasks. This was achieved through several original contributions: new insights into coupling, dynamics, and statistical properties of sensors; a hardware implementation of a realtime multitone readout system; and the development of efficient signal processing algorithms for the extraction of sensor measurements from resonator response data. The performance of this improved sensor system was verified through a number of novel measurements, achieving a higher sampling rate than the best available technology yet with equivalent accuracy and precision. At the same time, these experiments revealed unforeseen applications in liquid metrology and precision microwave heating of miniature flow systems.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Index to NASA Tech Briefs, 1972

    Get PDF
    Abstracts of 1972 NASA Tech Briefs are presented. Four indexes are included: subject, personal author, originating center, and Tech Brief number

    Microwave resonant sensors

    Get PDF
    Microwave resonant sensors use the spectral characterisation of a resonator to make high sensitivity measurements of material electromagnetic properties at GHz frequencies. They have been applied to a wide range of industrial and scientific measurements, and used to study a diversity of physical phenomena. Recently, a number of challenging dynamic applications have been developed that require very high speed and high performance, such as kinetic inductance detectors and scanning microwave microscopes. Others, such as sensors for miniaturised fluidic systems and non-invasive blood glucose sensors, also require low system cost and small footprint. This thesis investigates new and improved techniques for implementing microwave resonant sensor systems, aiming to enhance their suitability for such demanding tasks. This was achieved through several original contributions: new insights into coupling, dynamics, and statistical properties of sensors; a hardware implementation of a realtime multitone readout system; and the development of efficient signal processing algorithms for the extraction of sensor measurements from resonator response data. The performance of this improved sensor system was verified through a number of novel measurements, achieving a higher sampling rate than the best available technology yet with equivalent accuracy and precision. At the same time, these experiments revealed unforeseen applications in liquid metrology and precision microwave heating of miniature flow systems
    • …
    corecore