137 research outputs found

    Microstructured Optical Fiber Sensors Embedded in a Laminate Composite for Smart Material Applications

    Get PDF
    Fiber Bragg gratings written in highly birefringent microstructured optical fiber with a dedicated design are embedded in a composite fiber-reinforced polymer. The Bragg peak wavelength shifts are measured under controlled axial and transversal strain and during thermal cycling of the composite sample. We obtain a sensitivity to transversal strain that exceeds values reported earlier in literature by one order of magnitude. Our results evidence the relevance of using microstructured optical fibers for structural integrity monitoring of composite material structures

    Strain Measurements of Composite Laminates with Embedded Fibre Bragg Gratings: Criticism and Opportunities for Research

    Get PDF
    Embedded optical fibre sensors are considered for structural health monitoring purposes in numerous applications. In fibre reinforced plastics, embedded fibre Bragg gratings are found to be one of the most popular and reliable solutions for strain monitoring. Despite of their growing popularity, users should keep in mind their shortcomings, many of which are associated with the embedding process. This review paper starts with an overview of some of the technical issues to be considered when embedding fibre optics in fibrous composite materials. Next, a monitoring scheme is introduced which shows the different steps necessary to relate the output of an embedded FBG to the strain of the structure in which it is embedded. Each step of the process has already been addressed separately in literature without considering the complete cycle, from embedding of the sensor to the internal strain measurement of the structure. This review paper summarizes the work reported in literature and tries to fit it into the big picture of internal strain measurements with embedded fibre Bragg gratings. The last part of the paper focuses on temperature compensation methods which should not be ignored in terms of in-situ measurement of strains with fibre Bragg gratings. Throughout the paper criticism is given where appropriate, which should be regarded as opportunities for future research

    Microstructured optical fiber Bragg grating-based shear stress sensing in adhesive bonds

    Get PDF
    We present shear stress sensing with a Bragg grating sensor fabricated in a highly birefringent microstructured optical fiber. This sensor has a shear strain sensing resolution of 0.04 pm/mu epsilon when embedded in a shear loaded adhesive bond. We achieve discrete shear stress mapping in an adhesive bond by embedding a multitude of these sensors at different locations in the bond line. Experiments and numerical modeling show the limited influence of angular misalignment of the sensor on its shear stress response. Finally, we discuss the cross-sensitivity of this sensor to shear strain and temperature

    Overview of Fiber Optic Sensor Technologies for Strain/Temperature Sensing Applications in Composite Materials

    Get PDF
    This paper provides an overview of the different types of fiber optic sensors (FOS) that can be used with composite materials and also their compatibility with and suitability for embedding inside a composite material. An overview of the different types of FOS used for strain/temperature sensing in composite materials is presented. Recent trends, and future challenges for FOS technology for condition monitoring in smart composite materials are also discussed. This comprehensive review provides essential information for the smart materials industry in selecting of appropriate types of FOS in accordance with end-user requirements

    Microstructured optical fiber Bragg grating-based strain and temperature sensing in the concrete buffer of the Belgian supercontainer concept

    Get PDF
    We present the use of microstructured optical fiber Bragg grating-based sensors for strain and temperature monitoring inside the concrete buffer of the Belgian supercontainer concept, demonstrated in a half-scale test in 2013. This test incorporated several optical fiber sensors inside the concrete buffer for production and condition monitoring. The optical fiber sensors presented here consist of small carbon-reinforced composite plates in which highly birefringent Butterfly microstructured optical fibers, equipped with fiber Bragg gratings, were embedded. The double reflection spectrum of these MOFGBs allows to simultaneously monitor strain and temperature, as confirmed by comparison with data obtained from thermocouples and vibrating-wire sensors installed near the MOFBGs

    Internal strain monitoring in composite materials with embedded photonic crystal fiber Bragg gratings

    Get PDF
    The possibility of embedding optical fiber sensors inside carbon fiber reinforced polymer (CFRP) for structural health monitoring purposes has already been demonstrated previously. So far however, these sensors only allowed axial strain measurements because of their low sensitivity for strain in the direction perpendicular to the optical fiber's axis. The design flexibility provided by novel photonic crystal fiber (PCF) technology now allows developing dedicated fibers with substantially enhanced sensitivity to such transverse loads. We exploited that flexibility and we developed a PCF that, when equipped with a fiber Bragg grating (FBG), leads to a sensor that allows measuring transverse strains in reinforced composite materials, with an order of magnitude increase of the sensitivity over the state-of-the-art. In addition it allows shear strain sensing in adhesive bonds, which are used in composite repair patches. This is confirmed both with experiments and finite element simulations on such fibers embedded in CFRP coupons and adhesive bonds. Our sensor brings the achievable transverse strain measurement resolution close to a target value of 1 mu strain and could therefore play an important role for multi-dimensional strain sensing, not only in the domain of structural health monitoring, but also in the field of composite material production monitoring. Our results thereby illustrate the added value that PCFs have to offer for internal strain measurements inside composite materials and structures

    Multi-axial strain monitoring of fibre reinforced thermosetting plastics using embedded highly birefringent optical fibre Bragg sensors

    Get PDF
    There is a growing interest in the use of fibre reinforced plastics (FRPs) as high-grade construction material for variouw applications that need to be lightweight, yet strong in sometimes harsh loading conditions. Despite the growing popularity of structural composite materials, one has to realize that their mechanical behaviour is significantly different compared to conventional isotropic construction materials. Strain monitoring of an in-service structure should greatly enhance the insight and confidence in the (long-term) behaviour of high performance composite structures. Structural health monitoring necessitates the possibility of measuring multi-axials strain fields. High birefringent optical fibres (HiBi-fibres) with Bragg grating can become a solution in this matter. Designing a multi-axial strain sensor based on optical FBGs should meet several basic requirements which are discussed in this dissertation
    • …
    corecore