143 research outputs found

    A Novel Synergistic Model Fusing Electroencephalography and Functional Magnetic Resonance Imaging for Modeling Brain Activities

    Get PDF
    Study of the human brain is an important and very active area of research. Unraveling the way the human brain works would allow us to better understand, predict and prevent brain related diseases that affect a significant part of the population. Studying the brain response to certain input stimuli can help us determine the involved brain areas and understand the mechanisms that characterize behavioral and psychological traits. In this research work two methods used for the monitoring of brain activities, Electroencephalography (EEG) and functional Magnetic Resonance (fMRI) have been studied for their fusion, in an attempt to bridge together the advantages of each one. In particular, this work has focused in the analysis of a specific type of EEG and fMRI recordings that are related to certain events and capture the brain response under specific experimental conditions. Using spatial features of the EEG we can describe the temporal evolution of the electrical field recorded in the scalp of the head. This work introduces the use of Hidden Markov Models (HMM) for modeling the EEG dynamics. This novel approach is applied for the discrimination of normal and progressive Mild Cognitive Impairment patients with significant results. EEG alone is not able to provide the spatial localization needed to uncover and understand the neural mechanisms and processes of the human brain. Functional Magnetic Resonance imaging (fMRI) provides the means of localizing functional activity, without though, providing the timing details of these activations. Although, at first glance it is apparent that the strengths of these two modalities, EEG and fMRI, complement each other, the fusion of information provided from each one is a challenging task. A novel methodology for fusing EEG spatiotemporal features and fMRI features, based on Canonical Partial Least Squares (CPLS) is presented in this work. A HMM modeling approach is used in order to derive a novel feature-based representation of the EEG signal that characterizes the topographic information of the EEG. We use the HMM model in order to project the EEG data in the Fisher score space and use the Fisher score to describe the dynamics of the EEG topography sequence. The correspondence between this new feature and the fMRI is studied using CPLS. This methodology is applied for extracting features for the classification of a visual task. The results indicate that the proposed methodology is able to capture task related activations that can be used for the classification of mental tasks. Extensions on the proposed models are examined along with future research directions and applications

    Reliability of EEG microstate analysis at different electrode densities during propofol-induced transitions of brain states.

    Full text link
    Electroencephalogram (EEG) microstate analysis is a promising and effective spatio-temporal method that can segment signals into several quasi-stable classes, providing a great opportunity to investigate short-range and long-range neural dynamics. However, there are still many controversies in terms of reproducibility and reliability when selecting different parameters or datatypes. In this study, five electrode configurations (91, 64, 32, 19, and 8 channels) were used to measure the reliability of microstate analysis at different electrode densities during propofol-induced sedation. First, the microstate topography and parameters at five different electrode densities were compared in the baseline (BS) condition and the moderate sedation (MD) condition, respectively. The intraclass correlation coefficient (ICC) and coefficient of variation (CV) were introduced to quantify the consistency of the microstate parameters. Second, statistical analysis and classification between BS and MD were performed to determine whether the microstate differences between different conditions remained stable at different electrode densities, and ICC was also calculated between the different conditions to measure the consistency of the results in a single condition. The results showed that in both the BS or MD condition, respectively, there were few significant differences in the microstate parameters among the 91-, 64-, and 32-channel configurations, with most of the differences observed between the 19- or 8-channel configurations and the other configurations. The ICC and CV data also showed that the consistency among the 91-, 64-, and 32-channel configurations was better than that among all five electrode configurations after including the 19- and 8-channel configurations. Furthermore, the significant differences between the conditions in the 91-channel configuration remained stable at the 64- and 32-channel resolutions, but disappeared at the 19- and 8-channel resolutions. In addition, the classification and ICC results showed that the microstate analysis became unreliable with fewer than 20 electrodes. The findings of this study support the hypothesis that microstate analysis of different brain states is more reliable with higher electrode densities; the use of a small number of channels is not recommended

    EEG Microstates During Resting Represent Personality Differences

    Get PDF
    We investigated the spontaneous brain electric activity of 13 skeptics and 16 believers in paranormal phenomena; they were university students assessed with a self-report scale about paranormal beliefs. 33-channel EEG recordings during no-task resting were processed as sequences of momentary potential distribution maps. Based on the maps at peak times of Global Field Power, the sequences were parsed into segments of quasi-stable potential distribution, the ‘microstates'. The microstates were clustered into four classes of map topographies (A-D). Analysis of the microstate parameters time coverage, occurrence frequency and duration as well as the temporal sequence (syntax) of the microstate classes revealed significant differences: Believers had a higher coverage and occurrence of class B, tended to decreased coverage and occurrence of class C, and showed a predominant sequence of microstate concatenations from A to C to B to A that was reversed in skeptics (A to B to C to A). Microstates of different topographies, putative "atoms of thought”, are hypothesized to represent different types of information processing.The study demonstrates that personality differences can be detected in resting EEG microstate parameters and microstate syntax. Microstate analysis yielded no conclusive evidence for the hypothesized relation between paranormal belief and schizophreni

    A deviant EEG brain microstate in acute, neuroleptic-naive schizophrenics at rest

    Get PDF
    Momentary brain electric field configurations are manifestations of momentary global functional states of the brain. Field configurations tend to persist over some time in the sub-second range (“microstates”) and concentrate within few classes of configurations. Accordingly, brain field data can be reduced efficiently into sequences of re-occurring classes of brain microstates, not overlapping in time. Different configurations must have been caused by different active neural ensembles, and thus different microstates assumedly implement different functions. The question arises whether the aberrant schizophrenic mentation is associated with specific changes in the repertory of microstates. Continuous sequences of brain electric field maps (multichannel EEG resting data) from 9 neuroleptic-naive, first-episode, acute schizophrenics and from 18 matched controls were analyzed. The map series were assigned to four individual microstate classes; these were tested for differences between groups. One microstate class displayed significantly different field configurations and shorter durations in patients than controls; degree of shortening correlated with severity of paranoid symptomatology. The three other microstate classes showed no group differences related to psychopathology. Schizophrenic thinking apparently is not a continuous bias in brain functions, but consists of intermittent occurrences of inappropriate brain microstates that open access to inadequate processing strategies and context informatio

    Electrical neuroimaging of music processing reveals mid-latency changes with level of musical expertise

    Get PDF
    This original research focused on the effect of training intensity on cerebral and behavioral processing of complex music using high-density event-related potential (ERP) approaches. Recently we have been able to show progressive changes with training in grey and white matter and higher order brain functioning using (f)MRI ((functional) Magnetic Resonance Imaging), as well as changes in musical and general cognitive functioning. The current study investigated the same population of non-musicians, amateur pianists and expert pianists using spatio-temporal ERP analysis, by means of microstate analysis, and ERP source imaging. The stimuli consisted of complex musical compositions containing three levels of transgression of musical syntax at closure that participants appraised. ERP waveforms, microstates and underlying brain sources revealed gradual differences according to expertise in a 300-500 ms window after the onset of the terminal chords of the pieces. Within this time-window, processing seemed to concern context-based memory updating, indicated by a P3b-like component or microstate for which underlying sources were localized in right middle temporal gyrus, anterior cingulate and right parahippocampal areas. Given that the 3 expertise groups were carefully matched for demographic factors, these results provide evidence of the progressive impact of training on brain and behavior

    Telling functional networks apart using ranked network features stability

    Get PDF
    Over the past few years, it has become standard to describe brain anatomical and functional organisation in terms of complex networks, wherein single brain regions or modules and their connections are respectively identified with network nodes and the links connecting them. Often, the goal of a given study is not that of modelling brain activity but, more basically, to discriminate between experimental conditions or populations, thus to find a way to compute differences between them. This in turn involves two important aspects: defining discriminative features and quantifying differences between them. Here we show that the ranked dynamical stability of network features, from links or nodes to higher-level network properties, discriminates well between healthy brain activity and various pathological conditions. These easily computable properties, which constitute local but topographically aspecific aspects of brain activity, greatly simplify inter-network comparisons and spare the need for network pruning. Our results are discussed in terms of microstate stability. Some implications for functional brain activity are discussed.Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK)-218S314French Ministry of Foreign Affairs PHC-Bosphore ProgramEuropean Research Council (ERC)Spanish State Research Agency, through the Severo Ochoa and Maria de Maeztu Program for Centers and Units of Excellence in R

    Interindividual differences in brain dynamics of early visual processes: Impact on score accuracy in the mental rotation task

    Get PDF
    Interindividual variations in the ability to perform visuospatial mental transformations have been investigated extensively, in particular through mental rotation tasks. However, the impact of early visual processes on performance has been largely ignored. To clarify this issue, we explored the time-course of early visual processing (from 0 to 450\ua0ms poststimulus) using event-related potentials topographic analyses. The main findings demonstrated a significant link between early attentional processes and accuracy scores occurring more than five seconds later, as well as a strong association between spatial covariance and microstate topographies exhibiting substantial gender differences. More specifically, the results indicated that, in a classical mental rotation task, the male brain expends more time processing visual-spatial information resulting in a longer bilateral positive potential at posterior-occipital sites. In comparison, the female brain initiates earlier processing of non-spatial information resulting in a faster transition from a bilateral positive potential of posterior-occipital sites to a negative potential at central-frontal sites. These findings illustrate how a more complete utilization of the spatiotemporal information contained in EEG recordings can provide important insights about the impact of early visual processes on interindividual differences, particularly across gender, and thus shed new light on alternate cognitive strategies
    corecore