536 research outputs found

    Microservices-based IoT Applications Scheduling in Edge and Fog Computing: A Taxonomy and Future Directions

    Full text link
    Edge and Fog computing paradigms utilise distributed, heterogeneous and resource-constrained devices at the edge of the network for efficient deployment of latency-critical and bandwidth-hungry IoT application services. Moreover, MicroService Architecture (MSA) is increasingly adopted to keep up with the rapid development and deployment needs of the fast-evolving IoT applications. Due to the fine-grained modularity of the microservices along with their independently deployable and scalable nature, MSA exhibits great potential in harnessing both Fog and Cloud resources to meet diverse QoS requirements of the IoT application services, thus giving rise to novel paradigms like Osmotic computing. However, efficient and scalable scheduling algorithms are required to utilise the said characteristics of the MSA while overcoming novel challenges introduced by the architecture. To this end, we present a comprehensive taxonomy of recent literature on microservices-based IoT applications scheduling in Edge and Fog computing environments. Furthermore, we organise multiple taxonomies to capture the main aspects of the scheduling problem, analyse and classify related works, identify research gaps within each category, and discuss future research directions.Comment: 35 pages, 10 figures, submitted to ACM Computing Survey

    MicroFog: A Framework for Scalable Placement of Microservices-based IoT Applications in Federated Fog Environments

    Full text link
    MicroService Architecture (MSA) is gaining rapid popularity for developing large-scale IoT applications for deployment within distributed and resource-constrained Fog computing environments. As a cloud-native application architecture, the true power of microservices comes from their loosely coupled, independently deployable and scalable nature, enabling distributed placement and dynamic composition across federated Fog and Cloud clusters. Thus, it is necessary to develop novel microservice placement algorithms that utilise these microservice characteristics to improve the performance of the applications. However, existing Fog computing frameworks lack support for integrating such placement policies due to their shortcomings in multiple areas, including MSA application placement and deployment across multi-fog multi-cloud environments, dynamic microservice composition across multiple distributed clusters, scalability of the framework, support for deploying heterogeneous microservice applications, etc. To this end, we design and implement MicroFog, a Fog computing framework providing a scalable, easy-to-configure control engine that executes placement algorithms and deploys applications across federated Fog environments. Furthermore, MicroFog provides a sufficient abstraction over container orchestration and dynamic microservice composition. The framework is evaluated using multiple use cases. The results demonstrate that MicroFog is a scalable, extensible and easy-to-configure framework that can integrate and evaluate novel placement policies for deploying microservice-based applications within multi-fog multi-cloud environments. We integrate multiple microservice placement policies to demonstrate MicroFog's ability to support horizontally scaled placement, thus reducing the application service response time up to 54%

    Secure Cloud-Edge Deployments, with Trust

    Get PDF
    Assessing the security level of IoT applications to be deployed to heterogeneous Cloud-Edge infrastructures operated by different providers is a non-trivial task. In this article, we present a methodology that permits to express security requirements for IoT applications, as well as infrastructure security capabilities, in a simple and declarative manner, and to automatically obtain an explainable assessment of the security level of the possible application deployments. The methodology also considers the impact of trust relations among different stakeholders using or managing Cloud-Edge infrastructures. A lifelike example is used to showcase the prototyped implementation of the methodology

    Report from GI-Dagstuhl Seminar 16394: Software Performance Engineering in the DevOps World

    Get PDF
    This report documents the program and the outcomes of GI-Dagstuhl Seminar 16394 "Software Performance Engineering in the DevOps World". The seminar addressed the problem of performance-aware DevOps. Both, DevOps and performance engineering have been growing trends over the past one to two years, in no small part due to the rise in importance of identifying performance anomalies in the operations (Ops) of cloud and big data systems and feeding these back to the development (Dev). However, so far, the research community has treated software engineering, performance engineering, and cloud computing mostly as individual research areas. We aimed to identify cross-community collaboration, and to set the path for long-lasting collaborations towards performance-aware DevOps. The main goal of the seminar was to bring together young researchers (PhD students in a later stage of their PhD, as well as PostDocs or Junior Professors) in the areas of (i) software engineering, (ii) performance engineering, and (iii) cloud computing and big data to present their current research projects, to exchange experience and expertise, to discuss research challenges, and to develop ideas for future collaborations

    Managing Service-Heterogeneity using Osmotic Computing

    Full text link
    Computational resource provisioning that is closer to a user is becoming increasingly important, with a rise in the number of devices making continuous service requests and with the significant recent take up of latency-sensitive applications, such as streaming and real-time data processing. Fog computing provides a solution to such types of applications by bridging the gap between the user and public/private cloud infrastructure via the inclusion of a "fog" layer. Such approach is capable of reducing the overall processing latency, but the issues of redundancy, cost-effectiveness in utilizing such computing infrastructure and handling services on the basis of a difference in their characteristics remain. This difference in characteristics of services because of variations in the requirement of computational resources and processes is termed as service heterogeneity. A potential solution to these issues is the use of Osmotic Computing -- a recently introduced paradigm that allows division of services on the basis of their resource usage, based on parameters such as energy, load, processing time on a data center vs. a network edge resource. Service provisioning can then be divided across different layers of a computational infrastructure, from edge devices, in-transit nodes, and a data center, and supported through an Osmotic software layer. In this paper, a fitness-based Osmosis algorithm is proposed to provide support for osmotic computing by making more effective use of existing Fog server resources. The proposed approach is capable of efficiently distributing and allocating services by following the principle of osmosis. The results are presented using numerical simulations demonstrating gains in terms of lower allocation time and a higher probability of services being handled with high resource utilization.Comment: 7 pages, 4 Figures, International Conference on Communication, Management and Information Technology (ICCMIT 2017), At Warsaw, Poland, 3-5 April 2017, http://www.iccmit.net/ (Best Paper Award

    Integration of Clouds to Industrial Communication Networks

    Get PDF
    Cloud computing, owing to its ubiquitousness, scalability and on-demand ac- cess, has transformed into many traditional sectors, such as telecommunication and manufacturing production. As the Fifth Generation Wireless Specifica- tions (5G) emerges, the demand on ubiquitous and re-configurable computing resources for handling tremendous traffic from omnipresent mobile devices has been put forward. And therein lies the adaption of cloud-native model in service delivery of telecommunication networks. However, it takes phased approaches to successfully transform the traditional Telco infrastructure to a softwarized model, especially for Radio Access Networks (RANs), which, as of now, mostly relies on purpose-built Digital Signal Processors (DSPs) for computing and processing tasks.On the other hand, Industry 4.0 is leading the digital transformation in manufacturing sectors, wherein the industrial networks is evolving towards wireless connectivity and the automation process managements are shifting to clouds. However, such integration may introduce unwanted disturbances to critical industrial automation processes. This leads to challenges to guaran- tee the performance of critical applications under the integration of different systems.In the work presented in this thesis, we mainly explore the feasibility of inte- grating wireless communication, industrial networks and cloud computing. We have mainly investigated the delay-inhibited challenges and the performance impacts of using cloud-native models for critical applications. We design a solution, targeting at diminishing the performance degradation caused by the integration of cloud computing

    Edge Video Analytics: A Survey on Applications, Systems and Enabling Techniques

    Full text link
    Video, as a key driver in the global explosion of digital information, can create tremendous benefits for human society. Governments and enterprises are deploying innumerable cameras for a variety of applications, e.g., law enforcement, emergency management, traffic control, and security surveillance, all facilitated by video analytics (VA). This trend is spurred by the rapid advancement of deep learning (DL), which enables more precise models for object classification, detection, and tracking. Meanwhile, with the proliferation of Internet-connected devices, massive amounts of data are generated daily, overwhelming the cloud. Edge computing, an emerging paradigm that moves workloads and services from the network core to the network edge, has been widely recognized as a promising solution. The resulting new intersection, edge video analytics (EVA), begins to attract widespread attention. Nevertheless, only a few loosely-related surveys exist on this topic. The basic concepts of EVA (e.g., definition, architectures) were not fully elucidated due to the rapid development of this domain. To fill these gaps, we provide a comprehensive survey of the recent efforts on EVA. In this paper, we first review the fundamentals of edge computing, followed by an overview of VA. The EVA system and its enabling techniques are discussed next. In addition, we introduce prevalent frameworks and datasets to aid future researchers in the development of EVA systems. Finally, we discuss existing challenges and foresee future research directions. We believe this survey will help readers comprehend the relationship between VA and edge computing, and spark new ideas on EVA.Comment: 31 pages, 13 figure

    Orchestration in the Cloud-to-Things Compute Continuum: Taxonomy, Survey and Future Directions

    Full text link
    IoT systems are becoming an essential part of our environment. Smart cities, smart manufacturing, augmented reality, and self-driving cars are just some examples of the wide range of domains, where the applicability of such systems has been increasing rapidly. These IoT use cases often require simultaneous access to geographically distributed arrays of sensors, and heterogeneous remote, local as well as multi-cloud computational resources. This gives birth to the extended Cloud-to-Things computing paradigm. The emergence of this new paradigm raised the quintessential need to extend the orchestration requirements i.e., the automated deployment and run-time management) of applications from the centralised cloud-only environment to the entire spectrum of resources in the Cloud-to-Things continuum. In order to cope with this requirement, in the last few years, there has been a lot of attention to the development of orchestration systems in both industry and academic environments. This paper is an attempt to gather the research conducted in the orchestration for the Cloud-to-Things continuum landscape and to propose a detailed taxonomy, which is then used to critically review the landscape of existing research work. We finally discuss the key challenges that require further attention and also present a conceptual framework based on the conducted analysis.Comment: Journal of Cloud Computing Pages: 2
    corecore