491 research outputs found

    Lateral interatomic dispersion forces

    Get PDF
    Van der Waals forces between atoms and molecules are universally assumed to act along the line separating them. Inspired by recent works on effects which can propel atoms parallel to a macroscopic surface via the Casimir--Polder force, we predict a lateral van der Waals force between two atoms, one of which is in an excited state with non-zero angular momentum and the other is isotropic and in its ground state. The resulting force acts in the same way as a planetary gear, in contrast to the rack-and-pinion motion predicted in works on the lateral Casimir--Polder force in the analogous case, for which the force predicted here is the microscopic origin. We illustrate the effect by predicting the trajectories of an excited caesium in the vicinity of ground-state rubidium, finding behaviour qualitatively different to that if lateral forces are ignored

    Spatial correlations of vacuum fluctuations and the Casimir-Polder potential

    Full text link
    We calculate the Casimir-Polder intermolecular potential using an effective Hamiltonian recently introduced. We show that the potential can be expressed in terms of the dynamical polarizabilities of the two atoms and the equal-time spatial correlation of the electric field in the vacuum state. This gives support to an interesting physical model recently proposed in the literature, where the potential is obtained from the classical interaction between the instantaneous atomic dipoles induced and correlated by the vacuum fluctuations. Also, the results obtained suggest a more general validity of this intuitive model, for example when external boundaries or thermal fields are present.Comment: 7 page

    Bohr-van Leeuwen theorem and the thermal Casimir effect for conductors

    Full text link
    The problem of estimating the thermal corrections to Casimir and Casimir-Polder interactions in systems involving conducting plates has attracted considerable attention in the recent literature on dispersion forces. Alternative theoretical models, based on distinct low-frequency extrapolations of the plates reflection coefficient for transverse electric (TE) modes, provide widely different predictions for the magnitude of this correction. In this paper we examine the most widely used prescriptions for this reflection coefficient from the point of view of their consistency with the Bohr-van Leeuwen theorem of classical statistical physics, stating that at thermal equilibrium transverse electromagnetic fields decouple from matter in the classical limit. We find that the theorem is satisfied if and only if the TE reflection coefficient vanishes at zero frequency in the classical limit. This criterion appears to rule out some of the models that have been considered recently for describing the thermal correction to the Casimir pressure with non-magnetic metallic plates.Comment: 12 pages, no figures. Presentation has been significantly improved, more references included. The new version matches the one accepted for publication in Phys. Rev.

    Casimir forces and non-Newtonian gravitation

    Get PDF
    The search for non-relativistic deviations from Newtonian gravitation can lead to new phenomena signalling the unification of gravity with the other fundamental interactions. Various recent theoretical frameworks indicate a possible window for non-Newtonian forces with gravitational coupling strength in the micrometre range. The major expected background in the same range is attributable to the Casimir force or variants of it if dielectric materials, rather than conducting ones, are considered. Here we review the measurements of the Casimir force performed so far in the micrometre range and how they determine constraints on non-Newtonian gravitation, also discussing the dominant sources of false signals. We also propose a geometry-independent parameterization of all data in terms of the measurement of the constant c. Any Casimir force measurement should lead, once all corrections are taken into account, to a determination of the constant c which, in order to assess the accuracy of the measurement, can be compared with its more precise value known through microscopic measurements. Although the last decade of experiments has resulted in solid demonstrations of the Casimir force, the situation is not conclusive with respect to being able to discover new physics. Future experiments and novel phenomenological analysis will be necessary to discover non-Newtonian forces or to push the window for their possible existence into regions of the parameter space which theoretically appear unnatural.Comment: Also available at http://www.iop.org/EJ/abstract/1367-2630/8/10/23

    Casimir energy and realistic model of dilute dielectric ball

    Get PDF
    The Casimir energy of a dilute homogeneous nonmagnetic dielectric ball at zero temperature is derived analytically for the first time for an arbitrary physically possible frequency dispersion of dielectric permittivity ϵ(iω)\epsilon(i\omega). A microscopic model of dielectrics is considered, divergences are absent in calculations because an average interatomic distance λ\lambda is a {\it physical} cut-off in the theory. This fact has been overlooked before, which led to divergences in various macroscopic approaches to the Casimir energy of connected dielectrics.Comment: 12 pages, 1 figure, latex 2e, journal versio

    Sculpting optical energy landscapes for multi-particle nanoscale assembly

    Get PDF
    To understand the forces and dynamics of two or more neutral particles trapped within an optical beam, careful consideration of the influence of inter-particle forces is required. The well-known, field-independent intrinsic force is known to derive from the Casimir-Polder interaction. However, the magnitude of this force may be over-ridden by the effect known as optical binding, in cases when the laser beam is of sufficient intensity. This binding interaction is completely independent of optomechanical effects relating to optical tweezers, and involves a stimulated (pairwise) forward-scattering process. Unlike the Casimir-Polder coupling, optical binding is not always an attractive force when both particles are in their ground state. Associated with optical binding are potential energy surfaces, which reveal intricate patterns of local minima – sets of positions in which one of the particles will sit at equilibrium (with the other notionally set at the origin). These optical energy landscapes, which can be illustrated by use of contour diagrams, have mostly been considered for systems in which spherical particles are optically bound. The effect of different particle shapes, for example tube-like structures, can also be explored. Moreover, although the theory of conventional optical binding generally assumes situations in which both particles reside in their ground states, new results arise when individual particles are excited to a higher electronic state. Although, in the experimentally most convenient structural configuration (for tumbling spherical particles), pairwise optical binding vanishes in the short-range region, novel effects can arise as a result of non-zero optical binding between three neighbouring particles
    • …
    corecore