29 research outputs found

    Synaptic Learning for Neuromorphic Vision - Processing Address Events with Spiking Neural Networks

    Get PDF
    Das Gehirn übertrifft herkömmliche Computerarchitekturen in Bezug auf Energieeffizienz, Robustheit und Anpassungsfähigkeit. Diese Aspekte sind auch für neue Technologien wichtig. Es lohnt sich daher, zu untersuchen, welche biologischen Prozesse das Gehirn zu Berechnungen befähigen und wie sie in Silizium umgesetzt werden können. Um sich davon inspirieren zu lassen, wie das Gehirn Berechnungen durchführt, ist ein Paradigmenwechsel im Vergleich zu herkömmlichen Computerarchitekturen erforderlich. Tatsächlich besteht das Gehirn aus Nervenzellen, Neuronen genannt, die über Synapsen miteinander verbunden sind und selbstorganisierte Netzwerke bilden. Neuronen und Synapsen sind komplexe dynamische Systeme, die durch biochemische und elektrische Reaktionen gesteuert werden. Infolgedessen können sie ihre Berechnungen nur auf lokale Informationen stützen. Zusätzlich kommunizieren Neuronen untereinander mit kurzen elektrischen Impulsen, den so genannten Spikes, die sich über Synapsen bewegen. Computational Neuroscientists versuchen, diese Berechnungen mit spikenden neuronalen Netzen zu modellieren. Wenn sie auf dedizierter neuromorpher Hardware implementiert werden, können spikende neuronale Netze wie das Gehirn schnelle, energieeffiziente Berechnungen durchführen. Bis vor kurzem waren die Vorteile dieser Technologie aufgrund des Mangels an funktionellen Methoden zur Programmierung von spikenden neuronalen Netzen begrenzt. Lernen ist ein Paradigma für die Programmierung von spikenden neuronalen Netzen, bei dem sich Neuronen selbst zu funktionalen Netzen organisieren. Wie im Gehirn basiert das Lernen in neuromorpher Hardware auf synaptischer Plastizität. Synaptische Plastizitätsregeln charakterisieren Gewichtsaktualisierungen im Hinblick auf Informationen, die lokal an der Synapse anliegen. Das Lernen geschieht also kontinuierlich und online, während sensorischer Input in das Netzwerk gestreamt wird. Herkömmliche tiefe neuronale Netze werden üblicherweise durch Gradientenabstieg trainiert. Die durch die biologische Lerndynamik auferlegten Einschränkungen verhindern jedoch die Verwendung der konventionellen Backpropagation zur Berechnung der Gradienten. Beispielsweise behindern kontinuierliche Aktualisierungen den synchronen Wechsel zwischen Vorwärts- und Rückwärtsphasen. Darüber hinaus verhindern Gedächtnisbeschränkungen, dass die Geschichte der neuronalen Aktivität im Neuron gespeichert wird, so dass Verfahren wie Backpropagation-Through-Time nicht möglich sind. Neuartige Lösungen für diese Probleme wurden von Computational Neuroscientists innerhalb des Zeitrahmens dieser Arbeit vorgeschlagen. In dieser Arbeit werden spikende neuronaler Netzwerke entwickelt, um Aufgaben der visuomotorischen Neurorobotik zu lösen. In der Tat entwickelten sich biologische neuronale Netze ursprünglich zur Steuerung des Körpers. Die Robotik stellt also den künstlichen Körper für das künstliche Gehirn zur Verfügung. Auf der einen Seite trägt diese Arbeit zu den gegenwärtigen Bemühungen um das Verständnis des Gehirns bei, indem sie schwierige Closed-Loop-Benchmarks liefert, ähnlich dem, was dem biologischen Gehirn widerfährt. Auf der anderen Seite werden neue Wege zur Lösung traditioneller Robotik Probleme vorgestellt, die auf vom Gehirn inspirierten Paradigmen basieren. Die Forschung wird in zwei Schritten durchgeführt. Zunächst werden vielversprechende synaptische Plastizitätsregeln identifiziert und mit ereignisbasierten Vision-Benchmarks aus der realen Welt verglichen. Zweitens werden neuartige Methoden zur Abbildung visueller Repräsentationen auf motorische Befehle vorgestellt. Neuromorphe visuelle Sensoren stellen einen wichtigen Schritt auf dem Weg zu hirninspirierten Paradigmen dar. Im Gegensatz zu herkömmlichen Kameras senden diese Sensoren Adressereignisse aus, die lokalen Änderungen der Lichtintensität entsprechen. Das ereignisbasierte Paradigma ermöglicht eine energieeffiziente und schnelle Bildverarbeitung, erfordert aber die Ableitung neuer asynchroner Algorithmen. Spikende neuronale Netze stellen eine Untergruppe von asynchronen Algorithmen dar, die vom Gehirn inspiriert und für neuromorphe Hardwaretechnologie geeignet sind. In enger Zusammenarbeit mit Computational Neuroscientists werden erfolgreiche Methoden zum Erlernen räumlich-zeitlicher Abstraktionen aus der Adressereignisdarstellung berichtet. Es wird gezeigt, dass Top-Down-Regeln der synaptischen Plastizität, die zur Optimierung einer objektiven Funktion abgeleitet wurden, die Bottom-Up-Regeln übertreffen, die allein auf Beobachtungen im Gehirn basieren. Mit dieser Einsicht wird eine neue synaptische Plastizitätsregel namens "Deep Continuous Local Learning" eingeführt, die derzeit den neuesten Stand der Technik bei ereignisbasierten Vision-Benchmarks erreicht. Diese Regel wurde während eines Aufenthalts an der Universität von Kalifornien, Irvine, gemeinsam abgeleitet, implementiert und evaluiert. Im zweiten Teil dieser Arbeit wird der visuomotorische Kreis geschlossen, indem die gelernten visuellen Repräsentationen auf motorische Befehle abgebildet werden. Drei Ansätze werden diskutiert, um ein visuomotorisches Mapping zu erhalten: manuelle Kopplung, Belohnungs-Kopplung und Minimierung des Vorhersagefehlers. Es wird gezeigt, wie diese Ansätze, welche als synaptische Plastizitätsregeln implementiert sind, verwendet werden können, um einfache Strategien und Bewegungen zu lernen. Diese Arbeit ebnet den Weg zur Integration von hirninspirierten Berechnungsparadigmen in das Gebiet der Robotik. Es wird sogar prognostiziert, dass Fortschritte in den neuromorphen Technologien und bei den Plastizitätsregeln die Entwicklung von Hochleistungs-Lernrobotern mit geringem Energieverbrauch ermöglicht

    Hardware Implementation of Convolutional STDP for On-line Visual Feature Learning

    Get PDF
    We present a highly hardware friendly STDP (Spike Timing Dependent Plasticity) learning rule for training Spiking Convolutional Cores in Unsupervised mode and training Fully Connected Classifiers in Supervised Mode. Examples are given for a 2-layer Spiking Neural System which learns in real time features from visual scenes obtained with spiking DVS (Dynamic Vision Sensor) Cameras.EU H2020 grant 644096 “ECOMODE”EU H2020 grant 687299 “NEURAM3”Ministry of Economy and Competitivity (Spain) /European Regional Development Fund TEC2012-37868-C04-01 (BIOSENSE)Junta de Andalucía (España) TIC-6091 (NANONEURO

    Neuromorphic stereo vision: A survey of bio-inspired sensors and algorithms

    Get PDF
    Any visual sensor, whether artificial or biological, maps the 3D-world on a 2D-representation. The missing dimension is depth and most species use stereo vision to recover it. Stereo vision implies multiple perspectives and matching, hence it obtains depth from a pair of images. Algorithms for stereo vision are also used prosperously in robotics. Although, biological systems seem to compute disparities effortless, artificial methods suffer from high energy demands and latency. The crucial part is the correspondence problem; finding the matching points of two images. The development of event-based cameras, inspired by the retina, enables the exploitation of an additional physical constraint—time. Due to their asynchronous course of operation, considering the precise occurrence of spikes, Spiking Neural Networks take advantage of this constraint. In this work, we investigate sensors and algorithms for event-based stereo vision leading to more biologically plausible robots. Hereby, we focus mainly on binocular stereo vision

    Digital desing for neuroporphic bio-inspired vision processing.

    Get PDF
    Artificial Intelligence (AI) is an exciting technology that flourished in this century. One of the goals for this technology is to give learning ability to computers. Currently, machine intelligence surpasses human intelligence in specific domains. Besides some conventional machine learning algorithms, Artificial Neural Networks (ANNs) is arguably the most exciting technology that is used to bring this intelligence to the computer world. Due to ANN’s advanced performance, increasing number of applications that need kind of intelligence are using ANN. Neuromorphic engineers are trying to introduce bio-inspired hardware for efficient implementation of neural networks. This hardware should be able to simulate a vast number of neurons in real-time with complex synaptic connectivity while consuming little power. The work that has been done in this thesis is hardware oriented, so it is necessary for the reader to have a good understanding of the hardware that is used for developments in this thesis. In this chapter, we provide a brief overview of the hardware platforms that are used in this thesis. Afterward, we explain briefly the contributions of this thesis to the bio-inspired processing research line

    Event-Driven Technologies for Reactive Motion Planning: Neuromorphic Stereo Vision and Robot Path Planning and Their Application on Parallel Hardware

    Get PDF
    Die Robotik wird immer mehr zu einem Schlüsselfaktor des technischen Aufschwungs. Trotz beeindruckender Fortschritte in den letzten Jahrzehnten, übertreffen Gehirne von Säugetieren in den Bereichen Sehen und Bewegungsplanung noch immer selbst die leistungsfähigsten Maschinen. Industrieroboter sind sehr schnell und präzise, aber ihre Planungsalgorithmen sind in hochdynamischen Umgebungen, wie sie für die Mensch-Roboter-Kollaboration (MRK) erforderlich sind, nicht leistungsfähig genug. Ohne schnelle und adaptive Bewegungsplanung kann sichere MRK nicht garantiert werden. Neuromorphe Technologien, einschließlich visueller Sensoren und Hardware-Chips, arbeiten asynchron und verarbeiten so raum-zeitliche Informationen sehr effizient. Insbesondere ereignisbasierte visuelle Sensoren sind konventionellen, synchronen Kameras bei vielen Anwendungen bereits überlegen. Daher haben ereignisbasierte Methoden ein großes Potenzial, schnellere und energieeffizientere Algorithmen zur Bewegungssteuerung in der MRK zu ermöglichen. In dieser Arbeit wird ein Ansatz zur flexiblen reaktiven Bewegungssteuerung eines Roboterarms vorgestellt. Dabei wird die Exterozeption durch ereignisbasiertes Stereosehen erreicht und die Pfadplanung ist in einer neuronalen Repräsentation des Konfigurationsraums implementiert. Die Multiview-3D-Rekonstruktion wird durch eine qualitative Analyse in Simulation evaluiert und auf ein Stereo-System ereignisbasierter Kameras übertragen. Zur Evaluierung der reaktiven kollisionsfreien Online-Planung wird ein Demonstrator mit einem industriellen Roboter genutzt. Dieser wird auch für eine vergleichende Studie zu sample-basierten Planern verwendet. Ergänzt wird dies durch einen Benchmark von parallelen Hardwarelösungen wozu als Testszenario Bahnplanung in der Robotik gewählt wurde. Die Ergebnisse zeigen, dass die vorgeschlagenen neuronalen Lösungen einen effektiven Weg zur Realisierung einer Robotersteuerung für dynamische Szenarien darstellen. Diese Arbeit schafft eine Grundlage für neuronale Lösungen bei adaptiven Fertigungsprozesse, auch in Zusammenarbeit mit dem Menschen, ohne Einbußen bei Geschwindigkeit und Sicherheit. Damit ebnet sie den Weg für die Integration von dem Gehirn nachempfundener Hardware und Algorithmen in die Industrierobotik und MRK

    HIERARCHICAL NEURAL COMPUTATION IN THE MAMMALIAN VISUAL SYSTEM

    Get PDF
    Our visual system can efficiently extract behaviorally relevant information from ambiguous and noisy luminance patterns. Although we know much about the anatomy and physiology of the visual system, it remains obscure how the computation performed by individual visual neurons is constructed from the neural circuits. In this thesis, I designed novel statistical modeling approaches to study hierarchical neural computation, using electrophysiological recordings from several stages of the mammalian visual system. In Chapter 2, I describe a two-stage nonlinear model that characterized both synaptic current and spike response of retinal ganglion cells with unprecedented accuracy. I found that excitatory synaptic currents to ganglion cells are well described by excitatory inputs multiplied by divisive suppression, and that spike responses can be explained with the addition of a second stage of spiking nonlinearity and refractoriness. The structure of the model was inspired by known elements of the retinal circuit, and implies that presynaptic inhibition from amacrine cells is an important mechanism underlying ganglion cell computation. In Chapter 3, I describe a hierarchical stimulus-processing model of MT neurons in the context of a naturalistic optic flow stimulus. The model incorporates relevant nonlinear properties of upstream V1 processing and explained MT neuron responses to complex motion stimuli. MT neuron responses are shown to be best predicted from distinct excitatory and suppressive components. The direction-selective suppression can impart selectivity of MT neurons to complex velocity fields, and contribute to improved estimation of the three-dimensional velocity of moving objects. In Chapter 4, I present an extended model of MT neurons that includes both the stimulus-processing component and network activity reflected in local field potentials (LFPs). A significant fraction of the trial-to-trial variability of MT neuron responses is predictable from the LFPs in both passive fixation and a motion discrimination task. Moreover, the choice-related variability of MT neuron responses can be explained by their phase preferences in low-frequency band LFPs. These results suggest an important role of network activity in cortical function. Together, these results demonstrated that it is possible to infer the nature of neural computation from physiological recordings using statistical modeling approaches

    Learning Mechanisms to account for the Speed, Selectivity and Invariance of Responses in the visual Cortex

    Get PDF
    Dans cette thèse je propose plusieurs mécanismes de plasticité synaptique qui pourraient expliquer la rapidité, la sélectivité et l'invariance des réponses neuronales dans le cortex visuel. Leur plausibilité biologique est discutée. J'expose également les résultats d'une expérience de psychophysique pertinente, qui montrent que la familiarité peut accélérer les traitements visuels. Au delà de ces résultats propres au système visuel, les travaux présentés ici créditent l'hypothèse de l'utilisation des dates de spikes pour encoder, décoder, et traiter l'information dans le cerveau - c'est la théorie dite du 'codage temporel'. Dans un tel cadre, la Spike Timing Dependent Plasticity pourrait jouer un rôle clef, en détectant des patterns de spikes répétitifs et en permettant d'y répondre de plus en plus rapidement.In this thesis I propose various activity-driven synaptic plasticity mechanisms that could account for the speed, selectivity and invariance of the neuronal responses in the visual cortex. Their biological plausibility is discussed. I also present the results of a relevant psychophysical experiment demonstrating that familiarity can accelerate visual processing. Beyond these results on the visual system, the studies presented here also credit the hypothesis that the brain uses the spike times to encode, decode, and process information - a theory referred to as 'temporal coding'. In such a framework the Spike Timing Dependent Plasticity may play a key role, by detecting repeating spike patterns and by generating faster and faster responses to those patterns

    Motion representation with spiking neural networks for grasping and manipulation

    Get PDF
    Die Natur bedient sich Millionen von Jahren der Evolution, um adaptive physikalische Systeme mit effizienten Steuerungsstrategien zu erzeugen. Im Gegensatz zur konventionellen Robotik plant der Mensch nicht einfach eine Bewegung und führt sie aus, sondern es gibt eine Kombination aus mehreren Regelkreisen, die zusammenarbeiten, um den Arm zu bewegen und ein Objekt mit der Hand zu greifen. Mit der Forschung an humanoiden und biologisch inspirierten Robotern werden komplexe kinematische Strukturen und komplizierte Aktor- und Sensorsysteme entwickelt. Diese Systeme sind schwierig zu steuern und zu programmieren, und die klassischen Methoden der Robotik können deren Stärken nicht immer optimal ausnutzen. Die neurowissenschaftliche Forschung hat große Fortschritte beim Verständnis der verschiedenen Gehirnregionen und ihrer entsprechenden Funktionen gemacht. Dennoch basieren die meisten Modelle auf groß angelegten Simulationen, die sich auf die Reproduktion der Konnektivität und der statistischen neuronalen Aktivität konzentrieren. Dies öffnet eine Lücke bei der Anwendung verschiedener Paradigmen, um Gehirnmechanismen und Lernprinzipien zu validieren und Funktionsmodelle zur Steuerung von Robotern zu entwickeln. Ein vielversprechendes Paradigma ist die ereignis-basierte Berechnung mit SNNs. SNNs fokussieren sich auf die biologischen Aspekte von Neuronen und replizieren deren Arbeitsweise. Sie sind für spike- basierte Kommunikation ausgelegt und ermöglichen die Erforschung von Mechanismen des Gehirns für das Lernen mittels neuronaler Plastizität. Spike-basierte Kommunikation nutzt hoch parallelisierten Hardware-Optimierungen mittels neuromorpher Chips, die einen geringen Energieverbrauch und schnelle lokale Operationen ermöglichen. In dieser Arbeit werden verschiedene SNNs zur Durchführung von Bewegungss- teuerung für Manipulations- und Greifaufgaben mit einem Roboterarm und einer anthropomorphen Hand vorgestellt. Diese basieren auf biologisch inspirierten funktionalen Modellen des menschlichen Gehirns. Ein Motor-Primitiv wird auf parametrische Weise mit einem Aktivierungsparameter und einer Abbildungsfunktion auf die Roboterkinematik übertragen. Die Topologie des SNNs spiegelt die kinematische Struktur des Roboters wider. Die Steuerung des Roboters erfolgt über das Joint Position Interface. Um komplexe Bewegungen und Verhaltensweisen modellieren zu können, werden die Primitive in verschiedenen Schichten einer Hierarchie angeordnet. Dies ermöglicht die Kombination und Parametrisierung der Primitiven und die Wiederverwendung von einfachen Primitiven für verschiedene Bewegungen. Es gibt verschiedene Aktivierungsmechanismen für den Parameter, der ein Motorprimitiv steuert — willkürliche, rhythmische und reflexartige. Außerdem bestehen verschiedene Möglichkeiten neue Motorprimitive entweder online oder offline zu lernen. Die Bewegung kann entweder als Funktion modelliert oder durch Imitation der menschlichen Ausführung gelernt werden. Die SNNs können in andere Steuerungssysteme integriert oder mit anderen SNNs kombiniert werden. Die Berechnung der inversen Kinematik oder die Validierung von Konfigurationen für die Planung ist nicht erforderlich, da der Motorprimitivraum nur durchführbare Bewegungen hat und keine ungültigen Konfigurationen enthält. Für die Evaluierung wurden folgende Szenarien betrachtet, das Zeigen auf verschiedene Ziele, das Verfolgen einer Trajektorie, das Ausführen von rhythmischen oder sich wiederholenden Bewegungen, das Ausführen von Reflexen und das Greifen von einfachen Objekten. Zusätzlich werden die Modelle des Arms und der Hand kombiniert und erweitert, um die mehrbeinige Fortbewegung als Anwendungsfall der Steuerungsarchitektur mit Motorprimitiven zu modellieren. Als Anwendungen für einen Arm (3 DoFs) wurden die Erzeugung von Zeigebewegungen und das perzeptionsgetriebene Erreichen von Zielen modelliert. Zur Erzeugung von Zeigebewegun- gen wurde ein Basisprimitiv, das auf den Mittelpunkt einer Ebene zeigt, offline mit vier Korrekturprimitiven kombiniert, die eine neue Trajektorie erzeugen. Für das wahrnehmungsgesteuerte Erreichen eines Ziels werden drei Primitive online kombiniert unter Verwendung eines Zielsignals. Als Anwendungen für eine Fünf-Finger-Hand (9 DoFs) wurden individuelle Finger-aktivierungen und Soft-Grasping mit nachgiebiger Steuerung modelliert. Die Greif- bewegungen werden mit Motor-Primitiven in einer Hierarchie modelliert, wobei die Finger-Primitive die Synergien zwischen den Gelenken und die Hand-Primitive die unterschiedlichen Affordanzen zur Koordination der Finger darstellen. Für jeden Finger werden zwei Reflexe hinzugefügt, zum Aktivieren oder Stoppen der Bewegung bei Kontakt und zum Aktivieren der nachgiebigen Steuerung. Dieser Ansatz bietet enorme Flexibilität, da Motorprimitive wiederverwendet, parametrisiert und auf unterschiedliche Weise kombiniert werden können. Neue Primitive können definiert oder gelernt werden. Ein wichtiger Aspekt dieser Arbeit ist, dass im Gegensatz zu Deep Learning und End-to-End-Lernmethoden, keine umfangreichen Datensätze benötigt werden, um neue Bewegungen zu lernen. Durch die Verwendung von Motorprimitiven kann der gleiche Modellierungsansatz für verschiedene Roboter verwendet werden, indem die Abbildung der Primitive auf die Roboterkinematik neu definiert wird. Die Experimente zeigen, dass durch Motor- primitive die Motorsteuerung für die Manipulation, das Greifen und die Lokomotion vereinfacht werden kann. SNNs für Robotikanwendungen ist immer noch ein Diskussionspunkt. Es gibt keinen State-of-the-Art-Lernalgorithmus, es gibt kein Framework ähnlich dem für Deep Learning, und die Parametrisierung von SNNs ist eine Kunst. Nichtsdestotrotz können Robotikanwendungen - wie Manipulation und Greifen - Benchmarks und realistische Szenarien liefern, um neurowissenschaftliche Modelle zu validieren. Außerdem kann die Robotik die Möglichkeiten der ereignis- basierten Berechnung mit SNNs und neuromorpher Hardware nutzen. Die physikalis- che Nachbildung eines biologischen Systems, das vollständig mit SNNs implementiert und auf echten Robotern evaluiert wurde, kann neue Erkenntnisse darüber liefern, wie der Mensch die Motorsteuerung und Sensorverarbeitung durchführt und wie diese in der Robotik angewendet werden können. Modellfreie Bewegungssteuerungen, inspiriert von den Mechanismen des menschlichen Gehirns, können die Programmierung von Robotern verbessern, indem sie die Steuerung adaptiver und flexibler machen
    corecore