76 research outputs found

    Biometrics-as-a-Service: A Framework to Promote Innovative Biometric Recognition in the Cloud

    Full text link
    Biometric recognition, or simply biometrics, is the use of biological attributes such as face, fingerprints or iris in order to recognize an individual in an automated manner. A key application of biometrics is authentication; i.e., using said biological attributes to provide access by verifying the claimed identity of an individual. This paper presents a framework for Biometrics-as-a-Service (BaaS) that performs biometric matching operations in the cloud, while relying on simple and ubiquitous consumer devices such as smartphones. Further, the framework promotes innovation by providing interfaces for a plurality of software developers to upload their matching algorithms to the cloud. When a biometric authentication request is submitted, the system uses a criteria to automatically select an appropriate matching algorithm. Every time a particular algorithm is selected, the corresponding developer is rendered a micropayment. This creates an innovative and competitive ecosystem that benefits both software developers and the consumers. As a case study, we have implemented the following: (a) an ocular recognition system using a mobile web interface providing user access to a biometric authentication service, and (b) a Linux-based virtual machine environment used by software developers for algorithm development and submission

    Quire: Lightweight Provenance for Smart Phone Operating Systems

    Full text link
    Smartphone apps often run with full privileges to access the network and sensitive local resources, making it difficult for remote systems to have any trust in the provenance of network connections they receive. Even within the phone, different apps with different privileges can communicate with one another, allowing one app to trick another into improperly exercising its privileges (a Confused Deputy attack). In Quire, we engineered two new security mechanisms into Android to address these issues. First, we track the call chain of IPCs, allowing an app the choice of operating with the diminished privileges of its callers or to act explicitly on its own behalf. Second, a lightweight signature scheme allows any app to create a signed statement that can be verified anywhere inside the phone. Both of these mechanisms are reflected in network RPCs, allowing remote systems visibility into the state of the phone when an RPC is made. We demonstrate the usefulness of Quire with two example applications. We built an advertising service, running distinctly from the app which wants to display ads, which can validate clicks passed to it from its host. We also built a payment service, allowing an app to issue a request which the payment service validates with the user. An app cannot not forge a payment request by directly connecting to the remote server, nor can the local payment service tamper with the request

    Security Enhanced EMV-Based Mobile Payment Protocol

    Get PDF
    Near field communication has enabled customers to put their credit cards into a smartphone and use the phone for credit card transaction. But EMV contactless payment allows unauthorized readers to access credit cards. Besides, in offline transaction, a merchant’s reader cannot verify whether a card has been revoked. Therefore, we propose an EMV-compatible payment protocol to mitigate the transaction risk. And our modifications to the EMV standard are transparent to merchants and users. We also encrypt the communications between a card and a reader to prevent eavesdropping on sensitive data. The protocol is able to resist impersonation attacks and to avoid the security threats in EMV. In offline transactions, our scheme requires a user to apply for a temporary offline certificate in advance. With the certificate, banks no longer need to lower customer’s credits for risk control, and users can have online-equivalent credits in offline transactions

    Improving Security of Crypto Wallets in Blockchain Technologies

    Get PDF
    A big challenge in blockchain and cryptocurrency is securing the private key from potential hackers. Nobody can rollback a transaction made with a stolen key once the network confirms it. The technical solution to protect private keys is the cryptocurrency wallet, software, hardware, or a combination to manage the keys. In this dissertation, we try to investigate the significant challenges in existing cryptocurrency wallets and propose innovative solutions. Firstly, almost all cryptocurrency wallets suffer from the lack of a secure and convenient backup and recovery process. We offer a new cryptographic scheme to securely back up a hardware wallet relying on the side-channel human visual verification on the hardware wallet. Another practical mechanism to protect the funds is splitting the money between two wallets with small and large amounts. We propose a new scheme to create hierarchical wallets that we call deterministic sub-wallet to achieve this goal. The user can send funds from the wallet with a large amount to a smaller one in a secure way. We propose a multilayered architecture for cryptocurrency wallets based on a Defense-in-Depth strategy to protect private keys with a balance between convenience and security. The user protects the private keys in three restricted layers with different protection mechanisms. Finally, we try to solve another challenge in cryptocurrencies, which is losing access to private keys by its user, resulting in inaccessible coins. We propose a new mechanism called lean recovery transaction to tackle this problem. We make a change in wallet key management to generate a recovery transaction when needed. We implement a proof-of-concept for all of our proposals on a resource-constraint hardware wallet with a secure element, an embedded display, and one physical button. Furthermore, we evaluate the performance of our implementation and analyze the security of our proposed mechanisms

    From Understanding Telephone Scams to Implementing Authenticated Caller ID Transmission

    Get PDF
    abstract: The telephone network is used by almost every person in the modern world. With the rise of Internet access to the PSTN, the telephone network today is rife with telephone spam and scams. Spam calls are significant annoyances for telephone users, unlike email spam, spam calls demand immediate attention. They are not only significant annoyances but also result in significant financial losses in the economy. According to complaint data from the FTC, complaints on illegal calls have made record numbers in recent years. Americans lose billions to fraud due to malicious telephone communication, despite various efforts to subdue telephone spam, scam, and robocalls. In this dissertation, a study of what causes the users to fall victim to telephone scams is presented, and it demonstrates that impersonation is at the heart of the problem. Most solutions today primarily rely on gathering offending caller IDs, however, they do not work effectively when the caller ID has been spoofed. Due to a lack of authentication in the PSTN caller ID transmission scheme, fraudsters can manipulate the caller ID to impersonate a trusted entity and further a variety of scams. To provide a solution to this fundamental problem, a novel architecture and method to authenticate the transmission of the caller ID is proposed. The solution enables the possibility of a security indicator which can provide an early warning to help users stay vigilant against telephone impersonation scams, as well as provide a foundation for existing and future defenses to stop unwanted telephone communication based on the caller ID information.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    A Distributed Ledger based infrastructure for Intelligent Transportation Systems

    Get PDF
    Intelligent Transportation Systems (ITS) are proposed as an efficient way to improve performances in transportation systems applying information, communication, and sensor technologies to vehicles and transportation infrastructures. The great amount of vehicles produced data, indeed, can potentially lead to a revolution in ITS development, making them more powerful multifunctional systems. To this purpose, the use of Vehicular Ad-hoc Networks (VANETs) can provide comfort and security to drivers through reliable communications. Meanwhile, distributed ledgers have emerged in recent years radically evolving the way that we used to consider finance, trust in communication and even renewing the concept of data sharing and allowing to establish autonomous, secured, trusted and decentralized systems. In this work an ITS infrastructure based on the combination of different emerging Distributed Ledger Technologies (DLTs) and VANETs is proposed, resulting in a transparent, self-managed and self-regulated system, that is not fully managed by a central authority. The intended design is focused on the user ability to use any type of DLT-based application and to transact using Smart Contracts, but also on the access control and verification over user’s vehicle produced data. Users "smart" transactions are achieved thanks to the Ethereum blockchain, widely used for distributed trusted computation, whilst data sharing and data access is possible thanks to the use of IOTA, a DLT fully designed to operate in the Internet of Things landscape, and IPFS, a protocol and a network that allows to work in a distributed file system. The aim of this thesis is to create a ready-to-work infrastructure based on the hypothesis that every user in the ITS must be able to participate. To evaluate the proposal, an infrastructure implementation is used in different real world use cases, common in Smart Cities and related to the ITS, and performance measurements are carried out for DLTs used

    Location reliability and gamification mechanisms for mobile crowd sensing

    Get PDF
    People-centric sensing with smart phones can be used for large scale sensing of the physical world by leveraging the sensors on the phones. This new type of sensing can be a scalable and cost-effective alternative to deploying static wireless sensor networks for dense sensing coverage across large areas. However, mobile people-centric sensing has two main issues: 1) Data reliability in sensed data and 2) Incentives for participants. To study these issues, this dissertation designs and develops McSense, a mobile crowd sensing system which provides monetary and social incentives to users. This dissertation proposes and evaluates two protocols for location reliability as a step toward achieving data reliability in sensed data, namely, ILR (Improving Location Reliability) and LINK (Location authentication through Immediate Neighbors Knowledge). ILR is a scheme which improves the location reliability of mobile crowd sensed data with minimal human efforts based on location validation using photo tasks and expanding the trust to nearby data points using periodic Bluetooth scanning. LINK is a location authentication protocol working independent of wireless carriers, in which nearby users help authenticate each other’s location claims using Bluetooth communication. The results of experiments done on Android phones show that the proposed protocols are capable of detecting a significant percentage of the malicious users claiming false location. Furthermore, simulations with the LINK protocol demonstrate that LINK can effectively thwart a number of colluding user attacks. This dissertation also proposes a mobile sensing game which helps collect crowd sensing data by incentivizing smart phone users to play sensing games on their phones. We design and implement a first person shooter sensing game, “Alien vs. Mobile User”, which employs techniques to attract users to unpopular regions. The user study results show that mobile gaming can be a successful alternative to micro-payments for fast and efficient area coverage in crowd sensing. It is observed that the proposed game design succeeds in achieving good player engagement

    Mobile application framework for collaborative creation and sharing of Jua Kali product designs: a case study of Kamukunji Enterprise Jua Kali Cluster

    Get PDF
    Thesis submitted in partial fulfillment of the requirements for the Degree of Master of Science in Computer-Based Information Systems (MSIS) at Strathmore UniversityThe Informal jua kali sector is a vibrant entity that has created employment and innovative products in Kenya. Many homes in Kenya have at least one or more jua kali products. Over time, some products have evolved through incremental improvements to become award winning products. The jiko for instance has evolved into a number of fuel-conserving variants, some of which have garnered more merit than others. For instance, the Jikokoa and Jiko poa are highly polished ceramic types that have gained local and international acclaim. Both are patented trademarks produced by Burn Design Laboratories. However, not all jua kali products gain this kind of traction. The result is that many product designs are phased out naturally by demand and supply. The manual storage of product designs and sketches on paper is not reliable as they wear out, get lost or are stolen over time. Some artisans even prefer not to have any physical records of their designs for fear of duplication by others. This study therefore sought to propose the creation of a mobile application framework for collaborative creation and sharing of jua kali product designs to be used among artisans. The application allows direct sketches to be made on a smart device’s touch screen and upload of images while helping track and attribute each contribution to the relevant artisan. This, the researcher hopes, helps in creating more customer-centric and uniform products with higher quality and less competing variations. The application has a user-interface and was designed as a web application to run on any internet enabled device with a web browser. The study utilized a mixed research methodology with both qualitative and quantitative data collection techniques. This enabled the researcher to understand the challenges and methods used and to analyze collected data in order to come up with the framework based on the results. 72% of the respondents indicated they would use the application to manage and store designs and sketches but only 36% would use it for collaborative creation citing lack of trust and exposure to risk as the main hindrance. This informed the researcher to create functionality for either doing private deigns or collaborating and sharing designs in a public domain. The objectives of this study were to identify the challenges associated with the current methods, review the existing online platforms, to develop a mobile application framework and to validate the mobile application framework for collaborative creation and sharing of jua kali products

    EBRF 2011 : conference proceedings

    Get PDF
    Published by University of Jyväskylä, Tampere University of Technology, University of Tampere, Aalto University, Lappeenranta University of Technology, University of Oulu, Abo Akademi Universit
    • …
    corecore