5 research outputs found

    Modelling of a MEMS-based microgripper : application to dexterous micromanipulation.

    No full text
    International audienceMEMS-based microgrippers with integrated force sensor have proved their efficiency to perform dexterous micromanipulation tasks through gripping forces sensing and control. For force control, knowledge based models are more relevant and gives better physical significance than the use of black box models. However this approach is often limited by many problems commonly encountered in the MEMS (micro electromechanical systems) structures such as: complex architectures, nonlinear behaviors and parameters uncertainties due to fabrication process at the micrometer scale. For these reasons theoretical approaches must be compared with experiments. This paper describes a modelling approach of a MEMS-based microgripper with integrated force sensor while handling micro-glass balls of 80μm diameter. Therefore, a state space representation is developed to couple both the dynamics of the actuation and sensing subsystems of the gripper through the stiffness of the manipulated object. A knowledge based model is obtained for small displacements at the tip of the gripper arms (small gripping forces) and is compared with experimental approaches. Good agreements are observed allowing interesting perspectives for the control

    Advanced medical micro-robotics for early diagnosis and therapeutic interventions

    Get PDF
    Recent technological advances in micro-robotics have demonstrated their immense potential for biomedical applications. Emerging micro-robots have versatile sensing systems, flexible locomotion and dexterous manipulation capabilities that can significantly contribute to the healthcare system. Despite the appreciated and tangible benefits of medical micro-robotics, many challenges still remain. Here, we review the major challenges, current trends and significant achievements for developing versatile and intelligent micro-robotics with a focus on applications in early diagnosis and therapeutic interventions. We also consider some recent emerging micro-robotic technologies that employ synthetic biology to support a new generation of living micro-robots. We expect to inspire future development of micro-robots toward clinical translation by identifying the roadblocks that need to be overcome

    Conception d'un microcapteur de force 3-axes pour tissus mous

    Get PDF
    Biomechanics, an emerging science, refers to the mechanical characterization of biological tissues. Recent work published in this field demonstrate the role of mechanical processes and properties on the biological tissues functionalities, and especially at the microscopic scale (cell biomechanics). Biomechanical data acquisition is however quite challenging. This requires appropriate measurement tools (for forces, strain, ...) to cope with the biological sample and environment constraints (biocompatibility, size, anisotropy, ...). In parallel, the fast developments observed these last years in microtechnologies lead to interesting research possibilities. The family of MEMS [MicroElectroMechanical Systems] devices for instance introduces a new potential of interaction with the microscopic world. The integration of this technology in the field of cellular biomechanics is thus a natural choice. In that context, this work aims to design a 3-axis microforce sensor to measure biological tissues deformations at the microscopic scale. The MEMS device, fabricated on SOI [Silicon on Insulator] wafers, is based on piezoresistive and capacitive force transductions. It can be used as an actuator at least in one direction. This thesis describes the design, fabrication and test of the 3-axis system. A 1-axis prototype, exclusively capacitive, is first realized and acts as the foundation of the 3-axis device. The 1-axis force sensor, tested on the [0 ? 350[mu]N ] range shows a sensitivity in the order of 4.85mV/[mu]N (G=2000) and a resolution of 1.24[mu]N (linearity until 100[mu]N ). A new 3-axis geometry is then proposed to improve the direction decoupling efficiency of 2-axis capacitive sensors presented in publications and add a third detection axis. The decoupling is achieved using a"two frames" geometry and piezoresistors implanted in a configuration only sensitive to an out-of-plane loading. The three transducers performances are analysed individually. Tested on a range of 250? N , the sensors show a linear behaviour on the whole forces domain in the out-of-plane axis (piezoresistors) and until 100[mu]N in the in-plane direction (electrostatic combs). The piezoresistive and capacitive transducers are characterized by sensitivities of 0.93mV/[mu]N (g=400) and 6.35mV/[mu]N (G=500) respectively (on the linear part), with resolutions of 7[mu]N and 0.161[mu]N. The dynamical behaviour of the sensor allows its use above the kHz. The cross-talk sensitivities of each transducer are evaluated to 1-5% of their axis sensitivity (decoupling). The work presented in this thesis demonstrates the feasability of a 3-axis MEMS force sensor based on capacitive (in-plane sensing) and piezoresistive (out-of-plane sensing) detection. The proof of concept refers to the fabrication and performances (sensitivity, resolution, decoupling) of the proposed design
    corecore