37 research outputs found

    A QoS-enabled resource management scheme for F-HMIPv6 micro mobility approach

    Get PDF
    In the near future, wireless networks will certainly run real-time applications with special Quality of Service (QoS) requirements. In this context micro mobility management schemes such as Fast Handovers over Hierarchical Mobile IPv6 (F-HMIPv6) will be a useful tool in reducing Mobile IPv6 (MIPv6) handover disruption and thereby to improve delay and losses. However, F-HMIPv6 alone does not support QoS requirements for real-time applications. Therefore, in order to accomplish this goal, a novel resource management scheme for the Differentiated Services (DiffServ) QoS model is proposed to be used as an add-on to F-HMIPv6. The new resource management scheme combines the F-HMIPv6 functionalities with the DiffServ QoS model and with network congestion control and dynamic reallocation mechanisms in order to accommodate different QoS traffic requirements. This new scheme based on a Measurement-Based Admission Control (MBAC) algorithm is effective, simple, scalable and avoids the well known traditional resource reservation issues such as state maintenance, signaling overhead and processing load. By means of the admission evaluation of new flows and handover flows, it is able to provide the desired QoS requirements for new flows while preserving the QoS of existing ones. The evaluated results show that all QoS metrics analyzed were significantly improved with the new architecture indicating that it is able to provide a highly predictive QoS support to F-HMIPv6

    Evaluating rate-estimation for a mobility and QoS-aware network architecture

    Get PDF
    In a nearby future wireless networks will run applications with special QoS requirements. FHMIP is an effective scheme to reduce Mobile IPv6 handover disruption but it does not deal with any other specific QoS requirement. Therefore new traffic management schemes are needed in order to provide QoS guarantees to real-time applications and this implies network mobility optimizations and congestion control support. Traffic management schemes should deal with QoS requirements during handover and should use some resource management strategy in order to achieve this. In this article a new resource management scheme for DiffServ QoS model is proposed, to be used by access routers as an extension to FHMIP micromobility protocol. In order to prevent QoS deterioration, access routers pre-evaluate the impact of accepting all traffic from a mobile node, previous to the handover. This pre-evaluation and post decision on whether or not to accept any, or all, of this new traffic is based on a measurement based admission control procedure. This mobility and QoS-aware network architecture, integrating a simple signaling protocol, a traffic descriptor, and exhibiting adaptive behavior has been implemented and tested using ns-2. All measurements and decisions are based on DiffServ class-of-service aggregations, thus avoiding large flow state information maintenance. Rate estimators are essential mechanisms to the efficiency of this QoS-aware overall architecture. Therefore, in order to be able to choose the rate estimator that better fits this global architecture, two rate estimators - Time Sliding Window (TSW) and Exponential Moving Average (EMA) - have been studied and evaluated by means of ns-2 simulations in QoS-aware wireless mobility scenarios.Nuno V. Lopes was supported by an FCT Grant (SFRH/BD/35245/2007

    A micro-mobility solution for supporting QoS in global mobility

    Get PDF
    Today, users want to have simultaneously mobility, Quality of Service (QoS) and be always connected to Internet. Therefore, this paper proposes a QoS micro-mobility solution able to provide QoS support for global mobility. The solution comprises enhancements in the mobility management of Mobile IPv6 (MIPv6) and in the resources management of Differentiated Services (DiffServ) QoS model. The mobility management of MIPv6 was extended with fast and local handovers to improve its efficiency in micro-mobility scenarios with frequent handovers. The DiffServ resource management has been extended with adaptive and dynamic QoS provisioning to improve resources utilization in mobile IP networks. Further, in order to improve resources utilization the mobility and QoS messages were coupled, providing a resource management able to, proactively, react to mobile events. The performance improvement of the proposed solution and the model parametrization was evaluated using a simulation model. Simulation results indicate that the solution avoids network congestion and starvation of less priority DiffServ classes. Moreover, the results also indicate that bandwidth utilization for priority classes increases and the QoS offered to MN's applications, in each DiffServ class, keeps up unchangeable with MN mobility.(undefined

    A QoS-enable solution for mobile environments

    Get PDF
    This paper addresses the problem of designing a suitable Quality of Service (QoS) solution for mobile environments. The proposed solution deploys a dynamic QoS provisioning scheme able to deal with service protection during node mobility within a local domain, presenting extensions to deal with global mobility. The dynamic QoS provisioning encompasses a QoS architecture that uses explicit and implicit setup mechanisms to request resources from the network for the purpose of supporting control plane functions and optimizing resource allocation. Abstract--- For efficient resource allocation, the resource and mobility management schemes have been coupled resulting in a QoS/Mobility aware network architecture able to react proactively to mobility events. Both management schemes have been optimized to work together, in order to support seamless handovers for mobile users running real-time applications. Abstract--- The analysis of performance improvement and the model parametrization of the proposed solution have been evaluated using simulation. Simulation results show that the solution avoids network congestion and also the starvation of less priority DiffServ classes. Moreover, the results also show that bandwidth utilization for priority classes is levered and that the QoS offered to Mobile Node's (MN's) applications, within each DiffServ class, is maintained in spite of MN mobility. Abstract--- The proposed model is simple, easy to implement and takes into account the mobile Internet requirements. Simulation results show that this new methodology is effective and able to provide QoS services adapted to application requests

    QoS-aware architecture for FHMIP micromobility

    Get PDF
    Wireless networks will certainly run applications with strict QoS requirements and so, micro-mobility protocols such as fast hierarchical mobile IPv6 (FHMIP) are useful tools to accomplish this new feature. The FHMIP is an effective scheme to reduce Mobile IPv6 handover disruption, however it does not support application's QoS requirements. Therefore, in order to provide QoS guarantees for real-time applications it is necessary to develop new traffic management schemes; this implies the optimization of network mobility support and also some network congestion control. A traffic management scheme of this type should take into account the QoS requirements of handover users and should implement a resource management (RM) scheme in order to achieve this. In this paper, a new RM scheme for the DiffServ QoS model is proposed. This new scheme is implemented by access routers as an extension to FHMIP micromobility protocol. In order to prevent QoS degradation of the existing traffic, access routers should evaluate the impact of admitting a new mobile node (MN), previously to the handover. This evaluation and sequent decision on wether admitting or refusing MN's traffic is based on a measurement-based admission control (MBAC) algorithm. This architecture, that has been implemented and tested using ns-2, includes a simple signaling protocol, a traffic descriptor and exhibits an adaptive behavior to traffic QoS requirements. All the necessary measurements are aggregated by class-of-service, thus avoiding maintaining state on the individual flows.(undefined

    A survey of IPv6 mobility management in real-time communications

    Get PDF
    The number of mobile wireless Internet users is expected to increase in recent years. Consequently, the 32-bit addressing spaces used for mobile Internet protocol version 4(IPv4) is expected to be used up in the near future. Previous works show that mobile LPv4 causes unnecessary load to the mobile Internet. This unnecessary load increases handover latency. In this paper, we firstly discuss the hybrid Internet protocol version 6 (IPv6) mobility management. Hybrid IPv6 mobility management is the combination of fast handover and hierarchical IPv6 mobility managements. We propose the Session Initiation Protocol (SIP) over hybrid IPv6 mobility management to manage the handover process between inter-domain networks. We also propose cellular hybrid IPv6 mobility management to manage the handover process within intra-domain network. We believe that the proposed SIP over hybrid and cellular hybrid IPv6 mobility managements can solve the problem of unnecessary load and decrease the handover latency

    Quality of service and mobility management in IP-based radio access networks

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Context transfer support for mobility management in all-IP networks.

    Get PDF
    This thesis is a description of the research undertaken in the course of the PhD and evolves around a context transfer protocol which aims to complement and support mobility management in next generation mobile networks. Based on the literature review, it was identified that there is more to mobility management than handover management and the successful change of routing paths. Supportive mechanisms like fast handover, candidate access router discovery and context transfer can significantly contribute towards achieving seamless handover which is especially important in the case of real time services. The work focused on context transfer motivated by the fact that it could offer great benefits to session re-establishment during the handover operation of a mobile user and preliminary testbed observations illustrated the need for achieving this. Context transfer aims to minimize the impact of certain transport, routing, security-related services on the handover performance. When a mobile node (MN) moves to a new subnet it needs to continue such services that have already been established at the previous subnet. Examples of such services include AAA profile, IPsec state, header compression, QoS policy etc. Re-establishing these services at the new subnet will require a considerable amount of time for the protocol exchanges and as a result time- sensitive real-time traffic will suffer during this time. By transferring state to the new domain candidate services will be quickly re-established. This would also contribute to the seamless operation of application streams and could reduce susceptibility to errors. Furthermore, re-initiation to and from the mobile node will be avoided hence wireless bandwidth efficiency will be conserved. In this research an extension to mobility protocols was proposed for supporting state forwarding capabilities. The idea of forwarding states was also explored for remotely reconfiguring middleboxes to avoid any interruption of a mobile users' sessions or services. Finally a context transfer module was proposed to facilitate the integration of such a mechanism in next generation architectures. The proposals were evaluated analytically, via simulations or via testbed implementation depending on the scenario investigated. The results demonstrated that the proposed solutions can minimize the impact of security services like authentication, authorization and firewalls on a mobile user's multimedia sessions and thus improving the overall handover performance

    Securing Handover in Wireless IP Networks

    Get PDF
    In wireless and mobile networks, handover is a complex process that involves multiple layers of protocol and security executions. With the growing popularity of real time communication services such as Voice of IP, a great challenge faced by handover nowadays comes from the impact of security implementations that can cause performance degradation especially for mobile devices with limited resources. Given the existing networks with heterogeneous wireless access technologies, one essential research question that needs be addressed is how to achieve a balance between security and performance during the handover. The variations of security policy and agreement among different services and network vendors make the topic challenging even more, due to the involvement of commercial and social factors. In order to understand the problems and challenges in this field, we study the properties of handover as well as state of the art security schemes to assist handover in wireless IP networks. Based on our analysis, we define a two-phase model to identify the key procedures of handover security in wireless and mobile networks. Through the model we analyze the performance impact from existing security schemes in terms of handover completion time, throughput, and Quality of Services (QoS). As our endeavor of seeking a balance between handover security and performance, we propose the local administrative domain as a security enhanced localized domain to promote the handover performance. To evaluate the performance improvement in local administrative domain, we implement the security protocols adopted by our proposal in the ns-2 simulation environment and analyze the measurement results based on our simulation test

    Mobile Networks

    Get PDF
    The growth in the use of mobile networks has come mainly with the third generation systems and voice traffic. With the current third generation and the arrival of the 4G, the number of mobile users in the world will exceed the number of landlines users. Audio and video streaming have had a significant increase, parallel to the requirements of bandwidth and quality of service demanded by those applications. Mobile networks require that the applications and protocols that have worked successfully in fixed networks can be used with the same level of quality in mobile scenarios. Until the third generation of mobile networks, the need to ensure reliable handovers was still an important issue. On the eve of a new generation of access networks (4G) and increased connectivity between networks of different characteristics commonly called hybrid (satellite, ad-hoc, sensors, wired, WIMAX, LAN, etc.), it is necessary to transfer mechanisms of mobility to future generations of networks. In order to achieve this, it is essential to carry out a comprehensive evaluation of the performance of current protocols and the diverse topologies to suit the new mobility conditions
    corecore