71 research outputs found

    A TrustZone-assisted hypervisor supporting dynamic partial reconfiguration

    Get PDF
    Dissertação de mestrado em Engenharia Eletrónica Industrial e ComputadoresTraditionally, embedded systems were dedicated single-purpose systems characterised by hardware resource constraints and real-time requirements. However, with the growing computing abilities and resources on general purpose platforms, systems that were formerly divided to provide different functions are now merging into one System on Chip. One of the solutions that allows the coexistence of heterogeneous environments on the same hardware platform is virtualization technology, usually in the form of an hypervisor that manage different instances of OSes and arbitrate their execution and resource usage, according to the chosen policy. ARM TrustZone has been one of the technologies used to implement a virtualization solution with low overhead and low footprint. µRTZVisor a TrustZoneassisted hypervisor with a microkernel-like architecture - is a bare-metal embedded hypervisor that relies on TrustZone hardware to provide the foundation to implement strong spatial and temporal isolation between multiple guest OSes. The use of Partial Reconfiguration allows the designer to define partial reconfigurable regions in the FPGA and reconfigure them during runtime. This allows the system to have its functionalities changed during runtime using Dynamic Partial Reconfiguration (DPR), without needing to reconfigure all the FPGA. This is a major advantage, as it decreases the configuration overhead since partial bitstreams are smaller than full bitstreams and the reconfiguration time is shorter. Another advantage is reducing the need for larger logic areas and consequently reducing their power consumption. Therefore, a hypervisor that supports DPR brings benefits to the system. Aside from better FPGA resources usage, another improvement that it brings, is when critical hardware modules misbehave and the hardware module can be replaced. It also enables the controlling and changing of hardware accelerators dynamically, which can be used to meet the guest OSes requests for hardware resources as the need appears. The propose of this thesis is extending the µRTZVisor to have a DPR mechanism.Tradicionalmente, os sistemas embebidos eram sistemas dedicados a uma única tarefa e apenas limitados pelos seus requisitos de tempo real e de hardware. Contudo, como as plataformas de uso geral têm cada vez mais recursos e capacidade de processamento, muitos dos sistemas que executavam separadamente, passaram a apenas um sistema em plataforma recorrendo à tecnologia de virtualização, normalmente como um hipervisor que é capaz de gerir múltiplos sistemas operativos arbitrando a sua execução e acesso aos recursos da plataforma de acordo com uma politica predefinida. A tecnologia TrustZone da ARM tem sido uma das soluções implementadas sem ter grande impacto na performance dos sistemas operativos. µRTZVisor é um dos hipervisores baseados na TrustZone para implementar um isolamento espacial e temporal entre múltiplos sistemas operativos, sendo que defere de outras uma vez que é de arquitectura microkernel. O uso de Reconfiguração Parcial Dinâmica (RPD) permite ao designer definir várias regiões reconfiguráveis no FPGA que podem ser dinamicamente reconfiguradas durante o período de execução. Esta é uma grande vantagem, porque reduz os tempos de reconfiguração de módulos reconfiguráveis uma vez que os seus bitstreams são mais pequenos que bitstreams para a plataforma toda. A tecnologia também permite que nos FPGAs não sejam necessárias áreas lógicas tão grandes, o que também reduz o consumo de energia da plataforma. Um hipervisor que suporte RPD traz grandes benefícios para o sistema, nomeadamente melhor uso dos recursos de FPGA, implementação de aceleradores em hardware dinamicamente reconfiguráveis, e tratamento de falhas no hardware. Se houverem módulos que estejam a demonstrar comportamentos inesperados estes podem ser reconfigurados. O uso de aceleradores reconfiguráveis permite que o hardware seja adaptável conforme a necessidade destes pelos diferentes sistemas operativos. A proposta desta dissertação é então estender o µRTZVisor para ter a capacidade de usar módulos reconfiguráveis por RPD

    Mini-NOVA: A Lightweight ARM-based Virtualization Microkernel Supporting Dynamic Partial Reconfiguration

    Get PDF
    International audienceToday, ARM is becoming the mainstream family of processors in the high-performance embedded systems domain. In this context, adding a run-time reconfigurable FPGA device to the ARM processor into a single chip makes it possible to combine high performance and flexibility. In this paper, we propose a low-complexity design of system virtualization running on the Zynq platform. Virtualization of software and hardware resources are managed by a custom microkernel. The dedicated features to efficiently manage the dynamic partial reconfiguration (DPR) technology are described in details. The performance of the DPR management is evaluated and presented at the end of this paper

    A TrustZone-assisted secure silicon on a co-design framework

    Get PDF
    Dissertação de mestrado em Engenharia Eletrónica Industrial e ComputadoresEmbedded systems were for a long time, single-purpose and closed systems, characterized by hardware resource constraints and real-time requirements. Nowadays, their functionality is ever-growing, coupled with an increasing complexity and heterogeneity. Embedded applications increasingly demand employment of general-purpose operating systems (GPOSs) to handle operator interfaces and general-purpose computing tasks, while simultaneously ensuring the strict timing requirements. Virtualization, which enables multiple operating systems (OSs) to run on top of the same hardware platform, is gaining momentum in the embedded systems arena, driven by the growing interest in consolidating and isolating multiple and heterogeneous environments. The penalties incurred by classic virtualization approaches is pushing research towards hardware-assisted solutions. Among the existing commercial off-the-shelf (COTS) technologies for virtualization, ARM TrustZone technology is gaining momentum due to the supremacy and lower cost of TrustZone-enabled processors. Programmable system-on-chips (SoCs) are becoming leading players in the embedded systems space, because the combination of a plethora of hard resources with programmable logic enables the efficient implementation of systems that perfectly fit the heterogeneous nature of embedded applications. Moreover, novel disruptive approaches make use of field-programmable gate array (FPGA) technology to enhance virtualization mechanisms. This master’s thesis proposes a hardware-software co-design framework for easing the economy of addressing the new generation of embedded systems requirements. ARM TrustZone is exploited to implement the root-of-trust of a virtualization-based architecture that allows the execution of a GPOS side-by-side with a real-time OS (RTOS). RTOS services were offloaded to hardware, so that it could present simultaneous improvements on performance and determinism. Instead of focusing in a concrete application, the goal is to provide a complete framework, specifically tailored for Zynq-base devices, that developers can use to accelerate a bunch of distinct applications across different embedded industries.Os sistemas embebidos foram, durante muitos anos, sistemas com um simples e único propósito, caracterizados por recursos de hardware limitados e com cariz de tempo real. Hoje em dia, o número de funcionalidades começa a escalar, assim como o grau de complexidade e heterogeneidade. As aplicações embebidas exigem cada vez mais o uso de sistemas operativos (OSs) de uso geral (GPOS) para lidar com interfaces gráficas e tarefas de computação de propósito geral. Porém, os seus requisitos primordiais de tempo real mantém-se. A virtualização permite que vários sistemas operativos sejam executados na mesma plataforma de hardware. Impulsionada pelo crescente interesse em consolidar e isolar ambientes múltiplos e heterogéneos, a virtualização tem ganho uma crescente relevância no domínio dos sistemas embebidos. As adversidades que advém das abordagens de virtualização clássicas estão a direcionar estudos no âmbito de soluções assistidas por hardware. Entre as tecnologias comerciais existentes, a tecnologia ARM TrustZone está a ganhar muita relevância devido à supremacia e ao menor custo dos processadores que suportam esta tecnologia. Plataformas hibridas, que combinam processadores com lógica programável, estão em crescente penetração no domínio dos sistemas embebidos pois, disponibilizam um enorme conjunto de recursos que se adequam perfeitamente à natureza heterogénea dos sistemas atuais. Além disso, existem soluções recentes que fazem uso da tecnologia de FPGA para melhorar os mecanismos de virtualização. Esta dissertação propõe uma framework baseada em hardware-software de modo a cumprir os requisitos da nova geração de sistemas embebidos. A tecnologia TrustZone é explorada para implementar uma arquitetura que permite a execução de um GPOS lado-a-lado com um sistemas operativo de tempo real (RTOS). Os serviços disponibilizados pelo RTOS são migrados para hardware, para melhorar o desempenho e determinismo do OS. Em vez de focar numa aplicação concreta, o objetivo é fornecer uma framework especificamente adaptada para dispositivos baseados em System-on-chips Zynq, de forma a que developers possam usar para acelerar um vasto número de aplicações distintas em diferentes setores

    Hardware IPC for a TrustZone-assisted Hypervisor

    Get PDF
    Dissertação de mestrado em Engenharia Eletrónica Industrial e ComputadoresIn this modern era ruled by technology and the IoT (Internet of Things), embedded systems have an ubiquitous presence in our daily lives. Although they do differ from each other in their functionalities and end-purpose, they all share the same basic requirements: safety and security. Whether in a non-critical system such as a smartphone, or a critical one, like an electronic control unit of any modern vehicle, these requirements must always be fulfilled in order to accomplish a reliable and trust-worthy system. One well-established technology to address this problem is virtualization. It provides isolation by encapsulating each subsystem in separate Virtual-Machines (VMs), while also enabling the sharing of hardware resources. However, these isolated subsystems may still need to communicate with each other. Inter-Process Communication is present in most OSes’ stacks, representing a crucial part of it, which allows, through a myriad of different mechanisms, communication be- tween tasks. In a virtualized system, Inter-Partition Communication mechanisms implement the communication between the different subsystems referenced above. TrustZone technology has been in the forefront of hardware-assisted security and it has been explored for virtualization purposes, since natively it provides sep- aration between two execution worlds while enforcing, by design, different privi- lege to these execution worlds. LTZVisor, an open-source lightweight TrustZone- assisted hypervisor, emerged as a way of providing a platform for exploring how TrustZone can be exploited to assist virtualization. Its IPC mechanism, TZ- VirtIO, constitutes a standard virtual I/O approach for achieving communication between the OSes, but some overhead is caused by the introduction of the mech- anism. Hardware-based solutions are yet to be explored with this solution, which could bring performance and security benefits while diminishing overhead. Attending the reasons mentioned above, hTZ-VirtIO was developed as a way to explore the offloading of the software-based communication mechanism of the LTZVisor to hardware-based mechanisms.Atualmente, onde a tecnologia e a Internet das Coisas (IoT) dominam a so- ciedade, os sistemas embebidos são omnipresentes no nosso dia-a-dia, e embora possam diferir entre as funcionalidades e objetivos finais, todos partilham os mes- mos requisitos básicos. Seja um sistema não crítico, como um smartphone, ou um sistema crítico, como uma unidade de controlo de um veículo moderno, estes requisitos devem ser cumpridos de maneira a se obter um sistema confiável. Uma tecnologia bem estabelecida para resolver este problema é a virtualiza- ção. Esta abordagem providencia isolamento através do encapsulamento de sub- sistemas em máquinas virtuais separadas, além de permitir a partilha de recursos de hardware. No entanto, estes subsistemas isolados podem ter a necessidade de comunicar entre si. Comunicação entre tarefas está presente na maioria das pilhas de software de qualquer sistema e representa uma parte crucial dos mesmos. Num sistema virtualizado, os mecanismos de comunicação entre-partições implementam a comunicação entre os diferentes subsistemas mencionados acima. A tecnologia TrustZone tem estado na vanguarda da segurança assistida por hardware, e tem sido explorada na implementação de sistemas virtualizados, visto que permite nativamente a separação entre dois mundos de execução, e impondo ao mesmo tempo, por design, privilégios diferentes a esses mundos de execução. O LTZVisor, um hypervisor em código-aberto de baixo overhead assistido por Trust- Zone, surgiu como uma forma de fornecer uma plataforma que permite a explo- ração da TrustZone como tecnologia de assistência a virtualização. O TZ-VirtIO, mecanismo de comunicação do LTZVisor, constitui uma abordagem padrão de E/S virtuais, para permitir comunicação entre os sistemas operativos. No entanto, a introdução deste mecanismo provoca sobrecarga sobre o hypervisor. Soluções baseadas em hardware para o TZ-VirtIO ainda não foram exploradas, e podem trazer benefícios de desempenho e segurança, e diminuir a sobrecarga. Atendendo às razões mencionadas acima, o hTZ-VirtIO foi desenvolvido como uma maneira de explorar a migração do mecanismo de comunicação baseado em software do LTZVisor para mecanismos baseados em hardware

    An ARM-based Microkernel on Reconfigurable Zynq-7000 Platform

    Get PDF
    The combination of ARM processor and partially reconfigurable FPGA device is an emerging technology in the current embedded domain. In this paper we propose a custom microkernel on a hybrid ARM-FPGA platform, which is capable of managing reconfigurable hardware accelerators. We will introduce the hardware platform on which the microkernel has been developed and focus on the custom architecture supporting the management of partial reconfiguration and software tasks. An actual use case is studied and presented at the end of this paper to demonstrate the feasibility of our approach

    Mixed-architecture process scheduling on tightly coupled reconfigurable computers

    Get PDF
    The design and implementation of a multitasking runtime system for mixed-architecture applications on a tightly coupled FPGA-CPU platform is presented. The runtime environment and the user applications assume an underlying machine that encompasses multiple computing architectures within a unified machine model. Using this model, a unified process scheduling mechanism was developed that enables concurrent execution of multiple mixed-architecture processes. Scheduling and allocation strategies, including blocking and preemption, were implemented and evaluated with respect to performance and fairness on a Xilinx Zynq platform using a mix of synthetic workloads.postprin

    A first look at RISC-V virtualization from an embedded systems perspective

    Get PDF
    This article describes the first public implementation and evaluation of the latest version of the RISC-V hypervisor extension (H-extension v0.6.1) specification in a Rocket chip core. To perform a meaningful evaluation for modern multi-core embedded and mixedcriticality systems, we have ported Bao, an open-source static partitioning hypervisor, to RISC-V. We have also extended the RISC-V platformlevel interrupt controller (PLIC) to enable direct guest interrupt injection with low and deterministic latency and we have enhanced the timer infrastructure to avoid trap and emulation overheads. Experiments were carried out in FireSim, a cycle-accurate, FPGA-accelerated simulator, and the system was also successfully deployed and tested in a Zynq UltraScale+ MPSoC ZCU104. Our hardware implementation was opensourced and is currently in use by the RISC-V community towards the ratification of the H-extension specification.This work has been supported by FCT - undação para a Ciência e a Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. This work has also been supported by FCT within the PhD Scholarship Project Scope: SFRH/BD/138660/2018

    lLTZVisor: a lightweight TrustZone-assisted hypervisor for low-end ARM devices

    Get PDF
    Dissertação de mestrado em Engenharia Eletrónica Industrial e ComputadoresVirtualization is a well-established technology in the server and desktop space and has recently been spreading across different embedded industries. Facing multiple challenges derived by the advent of the Internet of Things (IoT) era, these industries are driven by an upgrowing interest in consolidating and isolating multiple environments with mixed-criticality features, to address the complex IoT application landscape. Even though this is true for majority mid- to high-end embedded applications, low-end systems still present little to no solutions proposed so far. TrustZone technology, designed by ARM to improve security on its processors, was adopted really well in the embedded market. As such, the research community became active in exploring other TrustZone’s capacities for isolation, like an alternative form of system virtualization. The lightweight TrustZone-assisted hypervisor (LTZVisor), that mainly targets the consolidation of mixed-criticality systems on the same hardware platform, is one design example that takes advantage of TrustZone technology for ARM application processors. With the recent introduction of this technology to the new generation of ARM microcontrollers, an opportunity to expand this breakthrough form of virtualization to low-end devices arose. This work proposes the development of the lLTZVisor hypervisor, a refactored LTZVisor version that aims to provide strong isolation on resource-constrained devices, while achieving a low-memory footprint, determinism and high efficiency. The key for this is to implement a minimal, reliable, secure and predictable virtualization layer, supported by the TrustZone technology present on the newest generation of ARM microcontrollers (Cortex-M23/33).Virtualização é uma tecnologia já bem estabelecida no âmbito de servidores e computadores pessoais que recentemente tem vindo a espalhar-se através de várias indústrias de sistemas embebidos. Face aos desafios provenientes do surgimento da era Internet of Things (IoT), estas indústrias são guiadas pelo crescimento do interesse em consolidar e isolar múltiplos sistemas com diferentes níveis de criticidade, para atender ao atual e complexo cenário aplicativo IoT. Apesar de isto se aplicar à maioria de aplicações embebidas de média e alta gama, sistemas de baixa gama apresentam-se ainda com poucas soluções propostas. A tecnologia TrustZone, desenvolvida pela ARM de forma a melhorar a segurança nos seus processadores, foi adoptada muito bem pelo mercado dos sistemas embebidos. Como tal, a comunidade científica começou a explorar outras aplicações da tecnologia TrustZone para isolamento, como uma forma alternativa de virtualização de sistemas. O "lightweight TrustZone-assisted hypervisor (LTZVisor)", que tem sobretudo como fim a consolidação de sistemas de criticidade mista na mesma plataforma de hardware, é um exemplo que tira vantagem da tecnologia TrustZone para os processadores ARM de alta gama. Com a recente introdução desta tecnologia para a nova geração de microcontroladores ARM, surgiu uma oportunidade para expandir esta forma inovadora de virtualização para dispositivos de baixa gama. Este trabalho propõe o desenvolvimento do hipervisor lLTZVisor, uma versão reestruturada do LTZVisor que visa em proporcionar um forte isolamento em dispositivos com recursos restritos, simultâneamente atingindo um baixo footprint de memória, determinismo e alta eficiência. A chave para isto está na implementação de uma camada de virtualização mínima, fiável, segura e previsível, potencializada pela tecnologia TrustZone presente na mais recente geração de microcontroladores ARM (Cortex-M23/33)

    Operating System Kernels on Multi-core Architectures

    Get PDF
    Operating System (OS) kernels have been under research and development for decades, mainly assuming single processor and distributed hardware systems. With the recent rise of multi-core chips that may incorporate a network on chip (NoC), new challenges have appeared that were not considered before. Given that a complete multi-core system that works on a single system on chip (SoC) is now the normal case, different cores on a single SoC may share other physical resources and data. This new sharing scheme on a SoC affects crucial aspects of an overall system like correctness, performance, predictability, scalability and security. Both hardware and OSs to flexibly cooperate in order to provide solutions for such challenges. SoC mimics the internet somehow now, with different cores acting as computer nodes, and the network medium is given in an advanced digital fabrics like buses or NoCs, that are a current research area. However, OSs are still assuming some (hardware) features like single physical memory and memory sharing for inter-process communication, page-based protection, cache operations, even when evolving from uniprocessor to multi-core processors. Such features not only may degrade performance and other system aspects, but also some of them make no sense for a multi-core SoC, and introduce some barriers and limitations. While new OS research is considering different kernel designs to cope up with multi-core systems, they are still limited by the current commercial hardware architectures. The objective of this thesis is to assess different kernel designs and implementations on multi-core hardware architectures. Part of the contributions of the thesis is porting RTEMS (RTOS) and seL4 microkernel to Epiphany and RISC-V hardware architectures respectively, trading-off the design and implementation decisions. This hands-on experience gave a better understanding of the real-world challenges regarding kernel designs and implementations
    corecore