172 research outputs found

    Impedance spectroscopy for in vitro toxicology

    Get PDF
    The impedance of biological material changes with frequency, a phenomenon that has been discovered more than 100 years ago. It is due to the fact that the cell membrane acts as a capacitor which filters out currents at low frequency and lets them pass at high frequency. This fundamental knowledge about biological dielectrics has incompletely been exploited to detect and distinguish toxicity effects on cell cultures, although impedance measurements have been used for long in this field. In this thesis, it was found that low frequency impedance signals are linked to initial stress responses of cells within cell populations when exposed to a toxin whereas high frequency measurements inform about major cell damage as is indicated by intracellular conductivity changes. In addition, when cells gain resistance to a toxin, they experience a higher cell stiffness which is expressed by an increased low frequency impedance. The study of impedance changes as a function of frequency and drug concentrations lead to the creation of an impedimetric concentration-response map which distinguishes cell responses within four concentration ranges without the use of any label. Although being inherently non-specific, this measurement method was shown to report on distinct toxicity effects, an important prerequisite when studying drug action on cancer cells where stimulating and lethal effects need to be distinguished rigorously. This thesis further encompasses the subject of three-dimensional impedance measurements, i.e. the screening of the entire depth of a three-dimensional tissue culture. Given the success of impedance measurements on cell monolayers, one would expect this development to continue with 3D cultures since the complex structure of in vivo tissues is mimicked more closely and, above all, since rapid and inexpensive techniques which are able to probe thick tissue samples are currently inexistent. Nevertheless, few studies have been carried out in this field. Here, the requirements of three-dimensional impedance sensors are discussed and challenged by the fabrication of a corresponding device, involving the development of so-called gel electrodes through a novel 2-step-soft-lithography process. Their specific design allows for the decrease of leak currents, a common problem when performing three-dimensional impedance measurements. The simultaneous measurement of multiple samples in parallel is an an essential condition when performing high throughput drug toxicity screening. Electrode switch systems are necessary which ultimately lead to setup complexity and signal noises. In this thesis, a method is introduced, enabling the simultaneous implementation of impedance measurements of multiple tissue samples with one electrode pair only. This is simply achieved by exploiting the frequency domain and finally contributed to reducing setup complexity

    Micro/Nanofluidic Devices for Single Cell Analysis

    Get PDF

    Evoluting microfluidics: Moving towards clinical applications

    Get PDF

    MatriGrid® based biological morphologies: tools for 3D cell culturing

    Get PDF
    Recent trends in 3D cell culturing has placed organotypic tissue models at another level. Now, not only is the microenvironment at the cynosure of this research, but rather, microscopic geometrical parameters are also decisive for mimicking a tissue model. Over the years, technologies such as micromachining, 3D printing, and hydrogels are making the foundation of this field. However, mimicking the topography of a particular tissue-relevant substrate can be achieved relatively simply with so-called template or morphology transfer techniques. Over the last 15 years, in one such research venture, we have been investigating a micro thermoforming technique as a facile tool for generating bioinspired topographies. We call them MatriGrid ® s. In this research account, we summarize our learning outcome from this technique in terms of the influence of 3D micro morphologies on different cell cultures that we have tested in our laboratory. An integral part of this research is the evolution of unavoidable aspects such as possible label-free sensing and fluidic automatization. The development in the research field is also documented in this account

    MEMS-based Lab-on-chip platform with integrated 3D and planar microelectrodes for organotypic and cell cultures

    Get PDF
    La presente tesis doctoral se centra en el desarrollo y la validación de plataformas lab on chip (LOC) para su aplicación en el campo de la Biología, la Medicina y la Biomedicina, particularmente relacionados con el cultivo de células y tejidos, así como su tratamiento mediante electroestimulación y su actividad eléctrica. Actualmente, las investigaciones centradas en el desarrollo de LOCs han experimentado un crecimiento considerable, gracias, en gran medida, a la versatilidad que ofrecen. Dicha versatilidad se traduce en numerosas aplicaciones, de las cuales, aquellas relacionadas con la Biología y la Medicina, están alcanzando especial relevancia. La integración de sensores, actuadores, circuitos microfluídicos y circuitos electrónicos en la misma plataforma, permite fabricar sistemas con múltiples aplicaciones. Esta tesis se centra fundamentalmente en el desarrollo de plataformas para el cultivo in vitro de tejidos y células, así como para la monitorización y la interacción con dicho cultivo. Los cultivos in vitro resultan de vital importancia para realizar estudios en células o tejidos, experimentar con medicamentos o estudiar su proliferación y morfología. De esta manera, se cubriría la creciente necesidad de encontrar una alternativa para replicar modelos humanos de enfermedades in vitro para poder desarrollar nuevos fármacos y avanzar en la medicina personalizada. Por tanto, la posibilidad de realizar cultivos de media o larga duración en plataformas que no precisen de un equipamiento costoso como las incubadoras de CO2 y que puedan ser monitorizadas mediante aplicaciones ópticas, supone un salto cualitativo en el desarrollo de los cultivos in vitro. En este contexto, se presenta el trabajo relacionado con esta tesis que ha sido desarrollada dentro del grupo de Microsistemas de la Escuela Superior de Ingeniería de la Universidad de Sevilla. La tesis está estructurada de manera que a lo largo de este escrito se da respuesta a los distintos aspectos anteriormente descritos. En primer lugar, se hace una breve introducción a la tecnología MEMS y a los principios básicos de la microfluídica. Dado que este trabajo se ha desarrollado en un ambiente multidisciplinar, esta sección resulta necesaria para dar una visión general a aquellos no familiarizados con esta disciplina. Tras esa introducción se realiza una descripción del estado del arte en el que se encuadra este trabajo, incluyendo los sistemas LoCs, y sus principales aplicaciones en el campo de la Biología, Medicina y Biomedicina, prestando especial atención a las aplicaciones de los LoCs relacionadas con cultivos organotípicos y de células. Tras la introducción y el estado del arte en el que se enmarca la tesis, se explican los resultados obtenidos durante este trabajo. Durante la primera parte, se describe el desarrollo, fabricación y caracterización de un sistema autónomo para el cultivo y electroestimulación de tejidos que integra un lab on PCB (LOP) formado por un array de microelectrodos en 3D (MEA) formado por hilos de oro de 25 µm en sustrato transparente, sensores y actuadores, junto con una plataforma microfluídica fabricada en metacrilato (PMMA) y polidimetilsiloxano (PDMS). El LOP permite mantener las condiciones de temperatura idóneas para llevar a cabo cultivos de media-larga duración sin necesidad de usar incubadoras deCO2 , así como su seguimiento de forma continua a través de un microscopio, gracias al uso de materiales transparentes. Este sistema también incluye una electrónica suplementaria y un programa que permite la monitorización del sistema y la electrostimulación de la muestra biológica. Tras explicar detalladamente el diseño y el novedoso proceso de fabricación del LOP, se presentan los resultados experimentales. En primer lugar, se ha demostrado que es posible desarrollar cultivos organotípicos de retinas de ratón durante más de 7 días, obteniendo resultados muy similares a los conseguidos para las mismas muestras biológicas, pero mediante métodos de cultivo tradicionales. Además, se ha logrado la neuro-protección mediante la electroestimulación de retinas de ratón con la enfermedad de la retinosis pigmentaria, logrando de esta manera ralentizar la degeneración de la muestra debido a la enfermedad. Otra de las aplicaciones que se quiere conseguir con el desarrollo del LOP anteriormente descrito se centra en la adquisición de señales eléctricas procedentes de las muestras biológicas cultivadas en el dispositivo, así como extrapolar su uso a cultivos celulares. Para la adquisición de señales procedentes del cultivo, la impedancia de los electrodos fabricados con hilos de oro de 25 µm ha resultado ser demasiado alta como para discernir entre el ruido base y la actividad eléctrica del cultivo. Por ello, la segunda parte de esta tesis doctoral se centra en la mejora de la MEA para la adquisición de actividad eléctrica. Dado el objetivo marcado en esta segunda parte, durante esta tesis se ha realizado una estancia en la Universidad de Bath. En dicha estancia, se ha caracterizado la actividad eléctrica de células del cáncer de próstata (PC-3), que fueron cultivadas en chips de silicio con electrodos de oro. La experiencia obtenida durante la estancia ha permitido avanzar en el desarrollo y la fabricación de nuevas MEAs para la adquisción de señales eléctricas de cultivos celulares. La primera aproximación para mejorar la MEA se ha realizado sobre PCB. Se trata de un dispositivo compuesto por pilares de oro en 3D fabricados mediante la técnica de Resumen XXV electroplating. Estos electrodos tienen 100 µm de diámetro y una altura de 25 µm que aseguran el contacto en el caso de cultivos de tejidos. Se ha demostrado una mejora significativa, traducida tanto en una impedancia más baja, como en una línea base de ruido menor con respecto a la MEA con hilos de oro. Asimismo, se han obtenido patrones de actividad eléctrica en las células PC-3 muy similares a los obtenidos con el chip de silicio y oro empleado en la estancia. Como mejora de la MEA 3D se ha cambiado el sustrato por otro transparente, como vidrio o PMMA, para permitir su uso en aplicaciones ópticas. Dichas MEAs integran electrodos planares fabricados mediante la técnica de sputtering de oro sobre su superficie. Estas MEAs están en una fase preliminar de desarrollo, y se está probando en primer lugar su biocompatibilidad y viabilidad para el desarrollo de cultivos celulares. Para finalizar, se exponen las conclusiones de esta tesis doctoral, entre las que destacan: el proceso de fabricación del LOP con electrodos de oro y la aplicación del sistema completo para desarrollar cultivos organotípicos, monitorizarlos y aplicar electroestimulación, logrando la neuro-protección de retinas de ratón con la retinosis pigmentaria; la transición hacia el desarrollo de una plataforma para cultivos celulares mejorando la MEA y su fabricación usando diferentes sustratos; la caracterización de la actividad eléctrica de las células PC-3. También se incluyen las líneas de investigación abiertas para continuar lo que se ha empezado en esta tesis doctoral. Para facilitar la comprensión del lector, se adjuntan los apéndices complementarios a esta tesis doctoral.The presented thesis is focused on the development and validation of lab on chip (LOC) platforms for their application on Biology, Medicine and Biomedicine, particularly those related with cells and tissues cultures, as well as their treatment through electrostimulation and their electrical behavior. Nowadays, research works focused on the development of LOCs have significantly increased, mostly thanks to its high versatility, which involves countless applications. Among all this applications, those related with Biology and Medicine are becoming more and more important. The integration of sensors, actuators, microfluidic circuits and electronic circuits in the same platform allows the fabrication of systems with lots of applications. This thesis is focused on the development of platforms for in vitro cultures of cells and tissues, to monitor their behavior and interact with the biological samples. The importance of in vitro cultures lies on the study of cells and tissues proliferation and morphology or performing drug delivery experiments. In this respect, through LOC technologies, it would be possible to model human diseases in vitro, in order to improve the development of new drugs and advance personalized medicine. Thus, the possibility of carrying out medium-long term cultures on platforms without the need of any expensive equipment, such as CO2 incubators, with software and monitoring, implies a qualitative step forward in the development of in vitro cultures. Within this framework, the work related to this thesis is presented. This PhD has been undertaken in the Microsystem group of the High School Engineering of the University of Seville. The structure of this thesis is organized in such a way that, all along the text, the different aspects previously described are explained in detail. Firstly, a brief introduction about MEMS technology and the basic principles of Microfluidics is presented. Due to this work has been developed in a multidisciplinary environment, this section becomes necessary in order to give a wide view to those non XXVII XXVIII Abstract directly familiarized with these fields. Subsequently, a description of the state of the art is presented, including LOC systems and their applications in Biology, Medicine and Biomedicine, taking special attention to those applications related to organotypic and cell cultures. After the introduction and the state of the art of the framework of this thesis, the results obtained are presented. In the first part of this PhD, the development, fabrication and characterization of the autonomous system for culture and electrostimulation of tissues is described. This system includes a lab on PCB (LOP) composed of a 3D microelectrode array (MEA), with gold wires of 25 µm on transparent substrate, sensors and actuators, together with a microfluidic platform made of PMMA and PDMS. This LOP allows to maintain the appropriate temperature conditions to carry out medium-long term cultures without using a CO2 incubator, as well as its continuous monitoring through an inverted microscope, thanks to the transparent materials used for its fabrication. This system is connected to an external electronic circuit and a software to control the whole system, including the electrostimulation of the biological sample. After explaining the design and the innovative fabrication process of the LOP, the experimental results are presented. Firstly, it has been demonstrated the suitability of this system to perform organotypic cultures of mice retinas for longer than 7 days, obtaining similar results to the same samples, but cultured through traditional methods. In addition, it has been provided neuroprotection to mice retinal explants with the retinitis pigmentosa (RP) disease through the electrostimulation of the samples, being able to slowdown the degeneration of the retinas caused by RP

    Advances in microfluidic in vitro systems for neurological disease modeling

    Get PDF
    Neurological disorders are the leading cause of disability and the second largest cause of death worldwide. Despite significant research efforts, neurology remains one of the most failure‐prone areas of drug development. The complexity of the human brain, boundaries to examining the brain directly in vivo, and the significant evolutionary gap between animal models and humans, all serve to hamper translational success. Recent advances in microfluidic in vitro models have provided new opportunities to study human cells with enhanced physiological relevance. The ability to precisely micro‐engineer cell‐scale architecture, tailoring form and function, has allowed for detailed dissection of cell biology using microphysiological systems (MPS) of varying complexities from single cell systems to “Organ‐on‐chip” models. Simplified neuronal networks have allowed for unique insights into neuronal transport and neurogenesis, while more complex 3D heterotypic cellular models such as neurovascular unit mimetics and “Organ‐on‐chip” systems have enabled new understanding of metabolic coupling and blood–brain barrier transport. These systems are now being developed beyond MPS toward disease specific micro‐pathophysiological systems, moving from “Organ‐on‐chip” to “Disease‐on‐chip.” This review gives an outline of current state of the art in microfluidic technologies for neurological disease research, discussing the challenges and limitations while highlighting the benefits and potential of integrating technologies. We provide examples of where such toolsets have enabled novel insights and how these technologies may empower future investigation into neurological diseases

    Microfabrication of Organically Modified Ceramics for Bio-MEMS

    Get PDF
    A Bio-Micro-Electro-Mechanical-System (Bio-MEMS) is a miniaturized device that has mechanical, optical and/or electrical components for biomedical operations. High sensitivity, rapid response and integration capabilities are the main reasons for their attraction to researchers and adaptation of Bio-MEMS technology for many applications. Although the recent progress in microfabrication techniques has enabled a high degree of Bio-MEMS integration, many challenges remain. For example, extending the conventional cell monolayer cultures into 3D in vitro organ models often demands fabrication of round-cross sectional microstructures (microchannels and microwells) and integration of embedded metal-sensing elements. Owing to their low cost and the ease of the fabrication process, polymers have gained much attention in terms of biological microfluidic applications. Organically Modified Ceramics (ORMOCER) are hybrid inorganic-organic polymers, a new class of negative tone photoresist. Among polymers, ORMOCERs exhibit great potential with a view to biological microfluidic applications based on their inherent biocompatibility, transparency and mechanical stability. In this thesis, ORMOCER microfabrication methods were developed for implementation of optical, electrical and structural elements that are crucial for biological applications. A novel method, relying on controlled over-exposure of Ormocomp (a commercial formulation of ORMOCERs) was introduced for fabrication of tunable round cross-sectional microstructures, including microchannels (subprojects I-III) and microwells (subproject IV). Moreover, ORMOCER metallization was examined from the perspective of integration of embedded sensing elements (micromirrors and electrodes) into ORMOCER microfluidic channels to facilitate on-chip fluorescence (subprojects I and II) and electrochemical (subproject III) detection as well as electrical impedance spectroscopy (subproject IV). Metal adhesion, step coverage and bonding of embedded metal elements were addressed and new processes developed for various thin-film metals (subprojects III and IV). The round cross-sectional shape of the microchannel was exploited for implementation of thin-film reflective metal elements as concave micromirrors for optical detection of single cells, whereas the round shape of the microwells was applied to microfluidic three-dimensional (3D; spheroid) cell cultures. In addition to topography, the inherent surface properties of ORMOCERs were modified to allow for regulation of cell adhesion. As a result, cell monolayers (2D) and spheroids (3D) could be cultured side-by-side in a single microfluidic channel with non-invasive online impedance-based (monolayer) and optical monitoring (spheroids) of cell proliferation.Mikrovalmistustekniikat mahdollistavat sähkömekaanisten laitteiden miniatyrisoinnin biologisia ja lääketieteellisiä sovelluksia varten. Näistä laitteista käytetään yleisesti nimeä Bio-MEMS (engl. Bio-Micro-Electro-Mechanical-Systems). Bio-MEMS-laite koostuu mekaanisista, sähköjohtavista ja/tai optisista komponenteista, jotka mahdollistavat esimerkiksi soluviljelyn, lääkeaineiden kontrolloidun annostelun soluviljelmiin ja tutkittavien aineiden pitoisuuksien mittaamisen kemiallisesti mikrofluidistiikan avulla. Vaikka Bio-MEMS-laitteet ovat viime vuosina kehittyneet valtavin harppauksin, on mikrovalmistustekniikoissa ja materiaaleissa vielä paljon kehitettävää. Polymeeripohjaiset materiaalit ovat verrattain edullisia ja niiden valmistusprosessit suoraviivaisia, minkä vuoksi polymeereja käytetään paljon biologisissa mikrofluidistiikan sovelluksissa. Monet sovellukset, kuten 3D-solumallien kasvatus, edellyttävät pyöreäpohjaisia rakenteita ja mitta-antureiden yhdistämistä. Erityisesti pyöreäpohjaisten mikrorakenteiden valmistaminen on usein hidasta ja vaatii useita eri työvaiheita. Myös polymeerimateriaalien metallointi (anturien yhdistäminen) vaatii räätälöityjä mikrovalmistusmenetelmiä. Tässä työssä kehitettiin uusia mikrovalmistusmenetelmiä kaupalliselle ORMOCER-polymeerille (engl. organically modified ceramics), joka on luonnostaan bioyhteensopiva, läpinäkyvä ja mekaanisesti kestävä epäorgaaninen-orgaaninen hybridimateriaali. Työn ensimmäisessä osassa kehitettiin uusi yksivaiheinen litografinen menetelmä poikkileikkaukseltaan pyöreiden mikrorakenteiden, kuten mikrokanavien ja -kuoppien, valmistamiseen. Työn toisessa osassa kehitettiin ORMOCER-polymeerin metallointimenetelmiä, jotka mahdollistavat muun muassa mikropeilien ja sähköisten elektrodien yhdistämisen ORMOCER-polymeeristä valmistettuihin mikrokanaviin. Mikropeilien avulla on mahdollista parantaa optisen detektion herkkyyttä esimerkiksi yhden solun analytiikassa (osajulkaisu I) tai pienmolekyylien elektroforeettisessa erotuksessa (osajulkaisu II). Vastaavasti sähköisten elektrodien avulla voidaan mitata esimerkiksi pienmolekyylien pitoisuuksia amperometrisesti (osajulkaisu III) tai solujen jakautumista impedanssispektrosopiaan perustutuen (osajulkaisu IV). Lisäksi havaittiin, että ORMOCER-polymeerin pintaominaisuuksia muokkaamalla on mahdollista kontrolloida solujen polymeeripinnalle, mikä mahdollisti solujen kasvattamisen vierekkäin sekä perinteisenä viljelmänä (2D, soluyhteensopiva ja tasainen pinta) että sferoideina (3D, soluja hylkivä, pyöreäpohjainen pinta) samassa mikrofluidistisessa kanavassa

    Single Cell Analysis

    Get PDF
    Cells are the most fundamental building block of all living organisms. The investigation of any type of disease mechanism and its progression still remains challenging due to cellular heterogeneity characteristics and physiological state of cells in a given population. The bulk measurement of millions of cells together can provide some general information on cells, but it cannot evolve the cellular heterogeneity and molecular dynamics in a certain cell population. Compared to this bulk or the average measurement of a large number of cells together, single-cell analysis can provide detailed information on each cell, which could assist in developing an understanding of the specific biological context of cells, such as tumor progression or issues around stem cells. Single-cell omics can provide valuable information about functional mutation and a copy number of variations of cells. Information from single-cell investigations can help to produce a better understanding of intracellular interactions and environmental responses of cellular organelles, which can be beneficial for therapeutics development and diagnostics purposes. This Special Issue is inviting articles related to single-cell analysis and its advantages, limitations, and future prospects regarding health benefits
    corecore