7 research outputs found

    MEMS Accelerometers

    Get PDF
    Micro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Accelerometers are among the most widely used sensors implemented in MEMS technology. MEMS accelerometers are showing a growing presence in almost all industries ranging from automotive to medical. A traditional MEMS accelerometer employs a proof mass suspended to springs, which displaces in response to an external acceleration. A single proof mass can be used for one- or multi-axis sensing. A variety of transduction mechanisms have been used to detect the displacement. They include capacitive, piezoelectric, thermal, tunneling, and optical mechanisms. Capacitive accelerometers are widely used due to their DC measurement interface, thermal stability, reliability, and low cost. However, they are sensitive to electromagnetic field interferences and have poor performance for high-end applications (e.g., precise attitude control for the satellite). Over the past three decades, steady progress has been made in the area of optical accelerometers for high-performance and high-sensitivity applications but several challenges are still to be tackled by researchers and engineers to fully realize opto-mechanical accelerometers, such as chip-scale integration, scaling, low bandwidth, etc

    Marshall Space Flight Center Research and Technology Report 2018

    Get PDF
    Many of NASAs missions would not be possible if it were not for the investments made in research advancements and technology development efforts. The technologies developed at Marshall Space Flight Center contribute to NASAs strategic array of missions through technology development and accomplishments. The scientists, researchers, and technologists of Marshall Space Flight Center who are working these enabling technology efforts are facilitating NASAs ability to fulfill the ambitious goals of innovation, exploration, and discovery

    Design of a COTS MST distributed sensor suite system for planetary surface exploration

    Get PDF
    The aim of this project is To bring together current commercially available technology and relevant Microsystems Technology (MST) into a small, standardised spacecraft primary systems architecture, multiple units of which can demonstrate collaboration… Distributed “lab-on-a-chip” sensor networks are a possible option for the surface exploration of both Earth and Mars, and as such have been chosen as a model small spacecraft architecture. This project presents a systems approach to the design of a collection of collaborative MST sensor suites for use in a variety of environments. Based on a set of derived objectives, the main features of the study are: What are the fundamental limits to miniaturisation? What are the hardware issues raised using both standard and MST components? What is the optimum deployment pattern of the network to locate various shaped targets? What are the strategic and economic challenges of MST and the development of a sensor suite network? In general, there are few fundamental physical laws that limit the size of the sensor system. Limits tend to be driven by other factors including user requirements and the external environment. A simple breadboard model of the sensor suite consisting current COTS MST components raised practical issues such as circuit layouts, power requirements and packaging. A grid illustrating features of the Martian surface was created. Various patterns of target and sensor clusters were simulated. Overall, for larger target areas, clusters of sensors produced the best “hit rate”. The overall system utilises both wired and wireless communications methods. The I2C protocol has been investigated for intersuite communications. A link has been made between bacteria pools found on Glaciers (Cryoconites) and the possible conditions for life at the Polar Ice Caps of Mars. The investigation of Arctic Cryoconites has been selected as a representative case study that will incorporate all aspects of the project and demonstrate the system design. A comprehensive mission baseline based on this application has been produced, however the system has been designed to enable its use in a variety of situations whilst requiring only minimal modification to the overall design.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Online learning of physics during a pandemic: A report from an academic experience in Italy

    Get PDF
    The arrival of the Sars-Cov II has opened a new window on teaching physics in academia. Frontal lectures have left space for online teaching, teachers have been faced with a new way of spreading knowledge, adapting contents and modalities of their courses. Students have faced up with a new way of learning physics, which relies on free access to materials and their informatics knowledge. We decided to investigate how online didactics has influenced students’ assessments, motivation, and satisfaction in learning physics during the pandemic in 2020. The research has involved bachelor (n = 53) and master (n = 27) students of the Physics Department at the University of Cagliari (N = 80, 47 male; 33 female). The MANOVA supported significant mean differences about gender and university level with higher values for girls and master students in almost all variables investigated. The path analysis showed that student-student, student-teacher interaction, and the organization of the courses significantly influenced satisfaction and motivation in learning physics. The results of this study can be used to improve the standards of teaching in physics at the University of Cagliar

    Planetary Science Vision 2050 Workshop : February 27–28 and March 1, 2017, Washington, DC

    Get PDF
    This workshop is meant to provide NASA’s Planetary Science Division with a very long-range vision of what planetary science may look like in the future.Organizer, Lunar and Planetary Institute ; Conveners, James Green, NASA Planetary Science Division, Doris Daou, NASA Planetary Science Division ; Science Organizing Committee, Stephen Mackwell, Universities Space Research Association [and 14 others]PARTIAL CONTENTS: Exploration Missions to the Kuiper Belt and Oort Cloud--Future Mercury Exploration: Unique Science Opportunities from Our Solar System’s Innermost Planet--A Vision for Ice Giant Exploration--BAOBAB (Big and Outrageously Bold Asteroid Belt) Project--Asteroid Studies: A 35-Year Forecast--Sampling the Solar System: The Next Level of Understanding--A Ground Truth-Based Approach to Future Solar System Origins Research--Isotope Geochemistry for Comparative Planetology of Exoplanets--The Moon as a Laboratory for Biological Contamination Research--“Be Careful What You Wish For:” The Scientific, Practical, and Cultural Implications of Discovering Life in Our Solar System--The Importance of Particle Induced X-Ray Emission (PIXE) Analysis and Imaging to the Search for Life on the Ocean Worlds--Follow the (Outer Solar System) Water: Program Options to Explore Ocean Worlds--Analogies Among Current and Future Life Detection Missions and the Pharmaceutical/ Biomedical Industries--On Neuromorphic Architectures for Efficient, Robust, and Adaptable Autonomy in Life Detection and Other Deep Space Missions

    ESARDA 39th Annual Meeting: 2017 Symposium

    Get PDF
    The 39th ESARDA symposium on Safeguards and Nuclear Non-Proliferation was held in DĂĽsseldorf, Germany from 16-18 May, 2017. The Symposium has been preceded by meetings of the ESARDA Working Groups on 15 May 2017. The event has once again been an opportunity for research organisations, safeguards authorities and nuclear plant operators to exchange information on new aspects of international safeguards and non-proliferation, as well as recent developments in nuclear safeguards and non-proliferation related research activities and their implications for the safeguards community.JRC.G.II.7-Nuclear securit
    corecore