681 research outputs found

    COBE's search for structure in the Big Bang

    Get PDF
    The launch of Cosmic Background Explorer (COBE) and the definition of Earth Observing System (EOS) are two of the major events at NASA-Goddard. The three experiments contained in COBE (Differential Microwave Radiometer (DMR), Far Infrared Absolute Spectrophotometer (FIRAS), and Diffuse Infrared Background Experiment (DIRBE)) are very important in measuring the big bang. DMR measures the isotropy of the cosmic background (direction of the radiation). FIRAS looks at the spectrum over the whole sky, searching for deviations, and DIRBE operates in the infrared part of the spectrum gathering evidence of the earliest galaxy formation. By special techniques, the radiation coming from the solar system will be distinguished from that of extragalactic origin. Unique graphics will be used to represent the temperature of the emitting material. A cosmic event will be modeled of such importance that it will affect cosmological theory for generations to come. EOS will monitor changes in the Earth's geophysics during a whole solar color cycle

    Application of advanced technology to space automation

    Get PDF
    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits

    The NASA SBIR product catalog

    Get PDF
    The purpose of this catalog is to assist small business firms in making the community aware of products emerging from their efforts in the Small Business Innovation Research (SBIR) program. It contains descriptions of some products that have advanced into Phase 3 and others that are identified as prospective products. Both lists of products in this catalog are based on information supplied by NASA SBIR contractors in responding to an invitation to be represented in this document. Generally, all products suggested by the small firms were included in order to meet the goals of information exchange for SBIR results. Of the 444 SBIR contractors NASA queried, 137 provided information on 219 products. The catalog presents the product information in the technology areas listed in the table of contents. Within each area, the products are listed in alphabetical order by product name and are given identifying numbers. Also included is an alphabetical listing of the companies that have products described. This listing cross-references the product list and provides information on the business activity of each firm. In addition, there are three indexes: one a list of firms by states, one that lists the products according to NASA Centers that managed the SBIR projects, and one that lists the products by the relevant Technical Topics utilized in NASA's annual program solicitation under which each SBIR project was selected

    Aspects of flow injection atomic absorption spectrometry

    Get PDF
    The literature relevant to the generation of volatile hydrides for analytical atomic spectroscopy has been reviewed, with particular reference to atomic absorption spectrometry (AAS). This reveals some conflicting information concerning the nature of various interference effects and strategies to overcome them. The use of flow injection (FI) procedures has been demonstrated by several research groups, to be beneficial. A review of the literature concerning the application of FI techniques to AAS shows that there is a sustained interest in the use of such a combination for analytical purposes. In particular, an interest in the on-line coupling of chemical pretreatment of samples is evident. Atomic absorption spectrometry has a limited working range and requires frequent calibration, consequently, there is a need for a rapid, precise on-line dilution procedure. The potential of FI systems with wide bore manifold tubing for on-line dilution was assessed and found to be limited by variations in dispersion coefficient arising from differences in specific gravities between the sample and carrier fluids. This could be overcome only by the use of unrealistically high flow rates. The use of FI procedures for the generation of volatile hydrides of selenium and arsenic was investigated. Optimization studies of system parameters, including the atomization step, were undertaken which demonstrated the benefits in applying FI in hydride generation atomic absorption spectrometry (HGAAS). Analytical methods were devised and evaluated for the determination of Se in copper metal and As in nickel alloy. These procedures involved the use of an on-line matrix removal step in which potentially interfering matrix elements were retained on a strong cation exchange resin (Dowex 50W). The manifold was designed so that the FI value acted as the interface between the matrix isolation stage and the vapour generation stage, a strategy which allowed independent optimization of each stage. Location of the ion exchange resin in the sample loop of a six-port rotary valve allowed the resin to be regenerated easily and rapidly, with a throughput capability of the order of 50 h⁻¹ and permit the proposed full automation of the whole analytical procedure. In the determination of As in nickel alloy a novel stopped-flow pre-reduction step was developed to permit AsIII quantification, therefore, achieve optimum sensitivity. The two systems permitted limits of detection for Se and As of 2.1 and 3.9 ng ml⁻¹ respectively. Direct comparisons were made with existing matrix isolation systems to emphasise the benefits of system design

    Earth resources: A continuing bibliography with indexes (issue 47)

    Get PDF
    This bibliography lists 524 reports, articles and other documents introduced into the NASA scientific and technical information system between July 1 and September 30, 1985. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economical analysis

    Small business innovation research. Abstracts of 1988 phase 1 awards

    Get PDF
    Non-proprietary proposal abstracts of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA are presented. Projects in the fields of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robots, computer sciences, information systems, data processing, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered
    corecore