633 research outputs found

    Steps in Metagenomics: Let’s Avoid Garbage in and Garbage Out

    Get PDF
    Is metagenomics a revolution or a new fad? Metagenomics is tightly associated with the availability of next-generation sequencing in all its implementations. The key feature of these new technologies, moving beyond the Sanger-based DNA sequencing approach, is the depth of nucleotide sequencing per sample.1 Knowing much more about a sample changes the traditional paradigms of “What is the most abundant?” or “What is the most significant?” to “What is present and potentially sig­nificant that might influence the situation and outcome?” Let’s take the case of identifying proper biomarkers of disease state in the context of chronic disease prevention. Prevention has been deemed as a viable option to avert human chronic diseases and to curb health­care management costs.2 The actual implementation of any effective preventive measures has proven to be rather difficult. In addition to the typically poor compliance of the general public, the vagueness of the successful validation of habit modification on the long-term risk, points to the need of defining new biomarkers of disease state. Scientists and the public are accepting the fact that humans are super-organisms, harboring both a human genome and a microbial genome, the latter being much bigger in size and diversity, and key for the health of individuals.3,4 It is time to investigate the intricate relationship between humans and their associated microbiota and how this relationship mod­ulates or affects both partners.5 These remarks can be expanded to the animal and plant kingdoms, and holistically to the Earth’s biome. By its nature, the evolution and function of all the Earth’s biomes are influenced by a myriad of interactions between and among microbes (planktonic, in biofilms or host associated) and the surrounding physical environment. The general definition of metagenomics is the cultivation-indepen­dent analysis of the genetic information of the collective genomes of the microbes within a given environment based on its sampling. It focuses on the collection of genetic information through sequencing that can target DNA, RNA, or both. The subsequent analyses can be solely fo­cused on sequence conservation, phylogenetic, phylogenomic, function, or genetic diversity representation including yet-to-be annotated genes. The diversity of hypotheses, questions, and goals to be accomplished is endless. The primary design is based on the nature of the material to be analyzed and its primary function

    Metagenomic approaches to investigate the contribution of the vineyard environment to the quality of wine fermentation : potentials and difficulties

    Get PDF
    The winemaking is a complex process that begins in the vineyard and ends at consumption moment. Recent reports have shown the relevance of microbial populations in the definition of the regional organoleptic and sensory characteristics of a wine. Metagenomic approaches, allowing the exhaustive identification of microorganisms present in complex samples, have recently played a fundamental role in the dissection of the contribution of the vineyard environment to wine fermentation. Systematic approaches have explored the impact of agronomical techniques, vineyard topologies, and climatic changes on bacterial and fungal populations found in the vineyard and in fermentations, also trying to predict or extrapolate the effects on the sensorial characteristics of the resulting wine. This review is aimed at highlighting the major technical and experimental challenges in dissecting the contribution of the vineyard and native environments microbiota to the wine fermentation process, and how metagenomic approaches can help in understanding microbial fluxes and selections across the environments and specimens related to wine fermentation

    Analytical Tools and Databases for Metagenomics in the Next-Generation Sequencing Era

    Get PDF
    Metagenomics has become one of the indispensable tools in microbial ecology for the last few decades, and a new revolution in metagenomic studies is now about to begin, with the help of recent advances of sequencing techniques. The massive data production and substantial cost reduction in next-generation sequencing have led to the rapid growth of metagenomic research both quantitatively and qualitatively. It is evident that metagenomics will be a standard tool for studying the diversity and function of microbes in the near future, as fingerprinting methods did previously. As the speed of data accumulation is accelerating, bioinformatic tools and associated databases for handling those datasets have become more urgent and necessary. To facilitate the bioinformatics analysis of metagenomic data, we review some recent tools and databases that are used widely in this field and give insights into the current challenges and future of metagenomics from a bioinformatics perspective.

    Prospects for multi-omics in the microbial ecology of water engineering

    Get PDF
    Advances in high-throughput sequencing technologies and bioinformatics approaches over almost the last three decades have substantially increased our ability to explore microorganisms and their functions – including those that have yet to be cultivated in pure isolation. Genome-resolved metagenomic approaches have enabled linking powerful functional predictions to specific taxonomical groups with increasing fidelity. Additionally, related developments in both whole community gene expression surveys and metabolite profiling have permitted for direct surveys of community-scale functions in specific environmental settings. These advances have allowed for a shift in microbiome science away from descriptive studies and towards mechanistic and predictive frameworks for designing and harnessing microbial communities for desired beneficial outcomes. Water engineers, microbiologists, and microbial ecologists studying activated sludge, anaerobic digestion, and drinking water distribution systems have applied various (meta)omics techniques for connecting microbial community dynamics and physiologies to overall process parameters and system performance. However, the rapid pace at which new omics-based approaches are developed can appear daunting to those looking to apply these state-of-the-art practices for the first time. Here, we review how modern genome-resolved metagenomic approaches have been applied to a variety of water engineering applications from lab-scale bioreactors to full-scale systems. We describe integrated omics analysis across engineered water systems and the foundations for pairing these insights with modeling approaches. Lastly, we summarize emerging omics-based technologies that we believe will be powerful tools for water engineering applications. Overall, we provide a framework for microbial ecologists specializing in water engineering to apply cutting-edge omics approaches to their research questions to achieve novel functional insights. Successful adoption of predictive frameworks in engineered water systems could enable more economically and environmentally sustainable bioprocesses as demand for water and energy resources increases.BT/Industriele Microbiologi

    The Human Microbiome Project: A Community Resource for the Healthy Human Microbiome

    Get PDF
    The Human Microbiome Project (HMP) [1],[2] is a concept that was long in the making. After the Human Genome Project, interest grew in sequencing the “other genome" of microbes carried in and on the human body [3],[4]. Microbial ecologists, realizing that >99% of environmental microbes could not be easily cultured, developed approaches to study microorganisms in situ [5], primarily by sequencing the 16S ribosomal RNA gene (16S) as a phylogenetic and taxonomic marker to identify members of microbial communities [6]. The need to develop corresponding new methods for culture-independent studies [7],[8] in turn precipitated a sea change in the study of microbes and human health, inspiring the new term “metagenomics" [9] both to describe a technological approach—sequencing and analysis of the genes from whole communities rather than from individual genomes—and to emphasize that microbes function within communities rather than as individual species. This shift from a focus on individual organisms to microbial interactions [10] culminated in a National Academy of Science report [11], which outlined challenges and promises for metagenomics as a way of understanding the foundational role of microbial communities both in the environment and in human health.National Institutes of Health (U.S.) (grant U54HG004969)National Institutes of Health (U.S.) (grant U54HG004973)National Institutes of Health (U.S.) (grant U54AI084844)National Institutes of Health (U.S.) (grant U01HG004866)National Institutes of Health (U.S.) (grant R01HG005969)National Institutes of Health (U.S.) (grant R01HG004872)United States. Army Research Office (grant W911NF-11-1-0473)National Science Foundation (U.S.) (NSF DBI-1053486)Howard Hughes Medical Institute (Early Career Scientist

    Metagenomics approaches in microbial ecology and research for sustainable agriculture

    Get PDF
    Technologies such as next generation sequencing (NGS) are transforming research fields at the methodological, conceptual, and organizational level. They open up new possibilities and bring with them new commitments and inherent limitations. We show from a philosophy of science perspective how NGS-based metagenomics has transformed microbial ecology and, with it, parts of agricultural soil science, which integrate ecological approaches with the aim to inform agricultural practices. We reconstruct agricultural science as design science (sensu Niiniluoto) and describe how the possibilities, commitments, and limitations of metagenomics approaches in microbial ecology shape values, situation assessments, and recommendations for interventions of soil microbiology in the context of sustainable agriculture.Technologien wie Next Generation Sequencing (NGS) transformieren Forschungsfelder auf der methodischen, konzeptionellen und organisatorischen Ebene. Sie eröffnen neue Möglichkeiten, bringen aber auch neue Festlegungen und inhärente Beschränkungen mit sich. Wir zeigen aus wissenschaftsphilosophischer Perspektive wie NGS-basierte Metagenomik die mikrobielle Ökologie und damit auch Teile der agrarwissenschaftlichen Bodenforschung transformiert hat, die ökologische Ansätze integrieren, um landwirtschaftliche Praktiken zu verändern. Wir rekonstruieren die Agrarwissenschaft als Designwissenschaft (sensu Niiniluoto) und beschreiben, wie die Möglichkeiten, Festlegungen und Beschränkungen der metagenomischen Ansätze in der mikrobiellen Ökologie die Werte, Situationsbewertungen und Empfehlungen für Eingriffe der Bodenmikrobiologie im Kontext nachhaltiger Landwirtschaft beeinflussen
    • …
    corecore