11,056 research outputs found

    Challenges in imaging and predictive modeling of rhizosphere processes

    Get PDF
    Background Plant-soil interaction is central to human food production and ecosystem function. Thus, it is essential to not only understand, but also to develop predictive mathematical models which can be used to assess how climate and soil management practices will affect these interactions. Scope In this paper we review the current developments in structural and chemical imaging of rhizosphere processes within the context of multiscale mathematical image based modeling. We outline areas that need more research and areas which would benefit from more detailed understanding. Conclusions We conclude that the combination of structural and chemical imaging with modeling is an incredibly powerful tool which is fundamental for understanding how plant roots interact with soil. We emphasize the need for more researchers to be attracted to this area that is so fertile for future discoveries. Finally, model building must go hand in hand with experiments. In particular, there is a real need to integrate rhizosphere structural and chemical imaging with modeling for better understanding of the rhizosphere processes leading to models which explicitly account for pore scale processes

    Influence of aggregate size and fraction on shrinkage induced micro-cracking of mortar and concrete

    Full text link
    In this paper, the influence of aggregate size and volume fraction on shrinkage induced micro-cracking and permeability of concrete and mortar was investigated. Nonlinear finite element analyses of model concrete and mortar specimens were performed. The aggregate diameter was varied between 2 and 16 mm. Furthermore, a range of volume fractions between 0.1 and 0.5 was studied. The nonlinear analyses were based on a 2D lattice approach in which aggregates were simplified as monosized cylindrical inclusions. The analysis results were interpreted by means of crack width and change of permeability. The results show that increasing aggregate diameter (at equal volume fraction) and decreasing volume fraction (at equal aggregate diameter) greatly increases permeability.Comment: 12th International Conference on Fracture (ICF 12

    An interdisciplinary approach towards improved understanding of soil deformation during compaction

    Get PDF
    International audienceSoil compaction not only reduces available pore volume in which fluids are stored, but it alters the arrangement of soil constituents and pore geometry, thereby adversely impacting fluid transport and a range of soil ecological functions. Quantitative understanding of stress transmission and deformation processes in arable soils remains limited. Yet such knowledge is essential for better predictions of effects of soil management practices such as agricultural field traffic on soil functioning. Concepts and theory used in agricultural soil mechanics (soil compaction and soil tillage) are often adopted from conventional soil mechanics (e.g. foundation engineering). However, in contrast with standard geotechnical applications, undesired stresses applied by agricultural tyres/tracks are highly dynamic and last for very short times. Moreover, arable soils are typically unsaturated and contain important secondary structures (e.g. aggregates), factors important for affecting their soil mechanical behaviour. Mechanical processes in porous media are not only of concern in soil mechanics, but also in other fields including geophysics and granular material science. Despite similarity of basic mechanical processes, theoretical frameworks often differ and reflect disciplinary focus. We review concepts from different but complementary fields concerned with porous media mechanics and highlight opportunities for synergistic advances in understanding deformation and compaction of arable soils. We highlight the important role of technological advances in non-destructive measurement methods at pore (X-ray tomography) and soil profile (seismic) scales that not only offer new insights into soil architecture and enable visualization of soil deformation, but are becoming instrumental in the development and validation of new soil compaction models. The integration of concepts underlying dynamic processes that modify soil pore spaces and bulk properties will improve the understanding of how soil management affect vital soil mechanical, hydraulic and ecological functions supporting plant growth

    Adsorption in complex porous networks with geometrical and chemical heterogeneity

    Get PDF
    International audienceWe report here a simple algorithm to create 2D lattice-based models of porous deposits of preformed nano-metric particles, by mimicking to some extent the physics of the actual deposition/aggregation mechanism. The heterogeneous porous networks obtained exhibit anisotropic properties unlike lattice-based models of porous materials in the existing literature, such as those of porous Vycor glass. We have then used calculations based on the mean field kinetic theory, in order to study the thermodynamics and dynamics of fluid adsorption and desorption in these lattice based porous models. We showcase the influence of pore heterogeneity on the phase equilibrium of the confined fluid, studying both heterogeneity in pore size distribution and chemical heterogeneity of the internal surface

    Hydro-mechanical analysis of expansive clays : constitutive and numerical modelling.

    Get PDF
    Bentonite-based materials are being currently considered in several countries as a backfill component in the multi-barrier concept for deep geological disposal of radioactive waste. The bentonite barrier fulfils several important functions: i) high swelling capacity to fill gaps and compress the excavation damaged zone and ii) very low hydraulic conductivity and important retention capacity which retards significantly radionuclides transport. Small-scale testing in geotechnical laboratories and in-situ experiments in underground research laboratories (URL) have demonstrated that initial state, water supply conditions and volume constrictions are the main aspects affecting the behaviour of bentonites. In this context, the main objective of the present study is the numerical simulation of the hydro-mechanical behaviour of expansive clays. For this purpose, a constitutive model has been developed to characterise the bentonite-based materials. The modelling of these materials is a quite challenging task. They exhibit a marked double-porosity system in which the swelling/shrinkage mechanism occurs at clay aggregate level and the collapsible behaviour comes from granular-like skeleton formed by the aggregates. In addition, several material configuration, with even more intricate fabric, have been proposed for the emplacement works of seals and plugs. The explicit consideration of two structural levels for the constitutive model seems to be suitable. Mechanical interaction and water mass exchanges between them can explain the short- and long-term behaviour. The model has been formulated using concepts of elasto-plasticity for strain hardening materials and generalized plasticity theory. The formulation has been implemented in the finite element code program CODE-BRIGHT and has been used to solve a variety of problems. The results provide relevant insights into the hydro-mechanical behaviour of double structure porous media, and they indicated the main aspects affecting the responses of expansive barriers. In particular, the relevance of the structural levels interaction has been demonstrated.Postprint (published version

    Recent developments on fractal-based approaches to nanofluids and nanoparticle aggregation

    Get PDF
    This project was supported by the National Natural Science Foundation of China (Nos. 41572116, 51576114, ​41630317), the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (No. CUG160602) and the Natural Science Foundation of Fujian Province of China (No. 2016J01254). The authors of the figures that used in presented review are also highly appreciated.Peer reviewedPostprin

    Tomographic Study of Internal Erosion of Particle Flows in Porous Media

    Full text link
    In particle-laden flows through porous media, porosity and permeability are significantly affected by the deposition and erosion of particles. Experiments show that the permeability evolution of a porous medium with respect to a particle suspension is not smooth, but rather exhibits significant jumps followed by longer periods of continuous permeability decrease. Their origin seems to be related to internal flow path reorganization by avalanches of deposited material due to erosion inside the porous medium. We apply neutron tomography to resolve the spatio-temporal evolution of the pore space during clogging and unclogging to prove the hypothesis of flow path reorganization behind the permeability jumps. This mechanistic understanding of clogging phenomena is relevant for a number of applications from oil production to filters or suffosion as the mechanisms behind sinkhole formation.Comment: 18 pages, 9 figure

    Nanostructured sonogels

    Get PDF
    Acoustic cavitation effects in sol-gel liquid processing permits to obtain nanostructured materials, with size-dependent properties. The so-called "hot spots" produce very high temperatures and pressures which act as nanoreactors. Ultrasounds force the dissolution and the reaction stars. The products (alcohol, water and silanol) help to continue the dissolution, being catalyst content, temperature bath and alkyl group length dependent. Popular choices used in the preparation of silica-based gels are tetramethoxysilane (TMOS), Si(OCH3)4 and tetraethoxysilane (TEOS), Si(OC 2H5)4. The resultant "sonogels" are denser gels with finer and homogeneous porosity than those of classic ones. They have a high surface/volume ratio and are built by small particles (1 nm radius) and a high cross-linked network with low -OH surface coverage radicals. In this way a cluster model is presented based on randomly-packed spheres in several hierarchical levels that represent the real sonoaerogel. Organic modified silicates (ORMOSIL) were obtained by supercritical drying in ethanol of the corresponding alcogel producing a hybrid organic/inorganic aerogel. The new material takes the advantages of the organic polymers as flexibility, low density, toughness and formability whereas the inorganic part contributes with surface hardness, modulus strength, transparency and high refractive index. The sonocatalytic method has proven to be adequate to prepare silica matrices for fine and uniform dispersion of CdS and PbS quantum dots (QDs), which show exciton quantum confinement. We present results of characterization of these materials, such as nitrogen physisorption, small angle X-ray/neutrons scattering, electron microscopy, uniaxial compression and nanoindentation. Finally these materials find application as biomaterials for tissue engineering and for CO2 sequestration by means the carbonation reaction.Ministerio de Ciencia y TecnologĂ­a MAT2005-158
    • …
    corecore